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Although we must prioritize the processing of task-relevant information to navigate life, our ability to do so fluctuates across time.
Previous work has identified fMRI functional connectivity (FC) networks that predict an individual’s ability to sustain attention and
vary with attentional state from 1 min to the next. However, traditional dynamic FC approaches typically lack the temporal precision
to capture moment-to-moment network fluctuations. Recently, researchers have “unfurled” traditional FC matrices in “edge cofluc-
tuation time series” which measure timepoint-by-timepoint cofluctuations between regions. Here we apply event-based and para-
metric fMRI analyses to edge time series to capture moment-to-moment fluctuations in networks related to attention. In two
independent fMRI datasets examining young adults of both sexes in which participants performed a sustained attention task, we
identified a reliable set of edges that rapidly deflects in response to rare task events. Another set of edges varies with continuous
fluctuations in attention and overlaps with a previously defined set of edges associated with individual differences in sustained atten-
tion. Demonstrating that edge-based analyses are not simply redundant with traditional regions-of-interest–based approaches, up to
one-third of reliably deflected edges were not predicted from univariate activity patterns alone. These results reveal the large poten-
tial in combining traditional fMRI analyses with edge time series to identify rapid reconfigurations in networks across the brain.
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Significance Statement

For over 30 years, task-based fMRI has been a key pillar in the development of cognitive-neuroscientific theories. However,
the standard analysis—fitting general linear models (GLMs) with regressors of cognition and behavior to activation time
series—treats each significant cluster as an independent unit. In contrast, the modern field of network neuroscience charac-
terizes relationships between these units (called edges) and how they change across time or tasks. Here, we combine these
frameworks in a general-use method, fitting GLMs to moment-to-moment estimates of edge cofluctuations. Results reveal
edges that reliably predict rapid changes in attention across independent datasets. This method offers a new framework
for understanding the neural underpinnings of fluctuating cognitive process.

Introduction
Our ability to selectively attend to task-relevant information
varies across time. For example, while reading a book, you
might periodically wonder if you have a message from a friend
and check your phone. You may have to jump back a few par-
agraphs to find the place where you lost focus. Such attention
fluctuations have been quantified with tasks in which partici-
pants attempt to detect rare target stimuli, either across pro-
longed periods (vigilance tasks; Mackworth, 1948) or within
a rapid stimulus stream (continuous performance tasks,
CPTs; Robertson et al., 1997).
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The gradual-onset continuous performance task (gradCPT;
Esterman et al., 2013; Rosenberg et al., 2013; Fortenbaugh et al.,
2015), a modified CPT in which image stimuli gradually fade
from one to the next, was developed to assess sustained attention
fluctuations while avoiding attention-capturing abrupt stimulus
onsets (but see Jun and Lee, 2021). The gradCPT requires partici-
pants to make button presses in response to images from a fre-
quently presented category while withholding responses to
images from a rare target category. Like other “not-X” CPTs, the
gradCPT is a powerful tool for investigating sustained attention
because it offers two methods for investigating attention fluctua-
tions. First, participants’ responses to rare targets can be analyzed
to assess successful withholding (reflecting engaged attention) or
failures to inhibit the prepotent response (indicating an attention
lapse). Second, the variability of response times (RTs) to frequent-
category images can be analyzed to produce a higher-frequency
measure of attentional state known as the variance time course
(VTC). Evidence suggests that more consistent RTs correspond
to engaged attention. In contrast, more erratic responding (includ-
ing both overly fast and slow responses) predict attention lapses
and disengaged focus (Esterman et al., 2013; Rosenberg et al.,
2013; Fortenbaugh et al., 2015; Kucyi et al., 2017; Jayakumar et
al., 2023). Thus, VTC values, calculated as the absolute deviation
of each RT from the participantmean, are thought to reflect fluctu-
ating sustained attention.

Analyses of the neural activity underpinning sustained atten-
tion fluctuations have revealed seemingly counterintuitive
results. When gradCPT RTs are consistent and performance is
accurate, functional MRI activity in the default mode network
(DMN)—typically associated with off-task and internally
directed thought and mind wandering (Buckner et al., 2008,
2019)—tends to rise above baseline (Esterman et al., 2013,
2014; Kucyi et al., 2016, 2017; Fortenbaugh et al., 2018; Song
et al., 2022). When RTs are erratic and performance suffers,
fMRI activity in brain regions associated with top-down control,
such as regions of the dorsal attention network (DAN), tends to
increase (Esterman et al., 2013, 2014; Kucyi et al., 2016, 2017;
Fortenbaugh et al., 2018; Song et al., 2022). This pattern of
results may reflect practiced (Mason et al., 2007), less effortful
performance during high attentional states and more effortful
performance that relies on top-down control mechanisms during
low attentional states (Esterman et al., 2013).

The activity approach has been informative but is limited in
two ways. First, univariate BOLD activity has been shown to be
a limited description of the signals present in the brain (Serences
et al., 2009). Second, although results are often examined at the
network level, activation approaches cannot always speak to the
functional configuration of networks. For example, activity in
regions within a network may become more synchronized with
increasing attention, without changing in overall activation.

An alternative approach has involved studying functional net-
works more directly by relating individual functional connectivity
(FC) matrices, computed using time series data collected while
participants performed attention tasks or rest, to attention func-
tion (Kessler et al., 2016; Poole et al., 2016; Wu et al., 2020;
Kucyi et al., 2021; Yoo et al., 2022). For example, one approach
identified sets of functional connections, or edges, whose strength
predicts individual performance on the gradCPT (Rosenberg et al.,
2016). In addition, FCmatrices from small time windows can pre-
dict ongoing sustained attention performance across a scale of 10
of seconds to minutes (Rosenberg et al., 2020; Kardan et al., 2022).
Windowed FC approaches, however, are limited by the window
size used, preventing them from capturing moment-to-moment

fluctuations in attentional state. This contrasts with the relative
temporal granularity of GLM fitting to univariate activity. While
the hemodynamic response function (HRF) is generally too
smooth and slow to capture subsecond attentional shifts
(Fiebelkorn and Kastner, 2019), it can still capture relatively fast
changes that occur over seconds.

In summary, although the two fMRI approaches described
above have related univariate activity and FC to sustained atten-
tion, neither method directly tests for the type of relatively rapid
network reconfigurations that may underlie fluctuations in atten-
tion. Traditional activation-based approaches are limited in the
sorts of changes they can identify, while FC approaches are lim-
ited in their temporal granularity. These limitations are not
restricted to research on sustained attention but apply to any cog-
nitive phenomenon that can be understood at the network level
and which varies from one moment to the next.

Recent advances in network neuroscience provide the possi-
bility of combining the FC perspective with the ability to capture
fluctuations on the order of seconds via GLM fitting. Specifically,
researchers have begun to “unfurl” the FC matrix into its time-
point-by-timepoint contributions, called edge cofluctuations
(Faskowitz et al., 2020; Zamani Esfahlani et al., 2020). These
edge cofluctuations reflect estimates of covariance between the
pair of brain regions comprising the edge at each moment in
the time series. The mean of these estimates across time is
Pearson’s r between the two regions’ time series, the most com-
mon FC metric. Edge cofluctuations capture higher-frequency
changes in covariance between brain regions than traditional
dynamic FC approaches, which incorporate information across
multiple observations in a time window.

Here, we combine the analytical methods for univariate activity
with a FC perspective to ask how moment-to-moment network
reconfigurations relate to fluctuations in sustained attention. To
address this question, we examined two independent gradCPT
fMRI datasets. We first examine the replicability of standard uni-
variate activity approaches (Fortenbaugh et al., 2018). Following
this, we fit standard GLMs to edge time series to capture atten-
tional lapses and correlate the VTC with edges. In almost all cases,
we identified a set of edges significantly deflected in both datasets.
A large proportion of these edges are not predicted from just uni-
variate activity. Furthermore, edges that reliably fluctuate with
attentional performance significantly overlap with an existing FC
model of sustained attention (Rosenberg et al., 2016). Finally, we
compare significance thresholding approaches with varying
assumptions and consider how the edge response functions may
differ from the canonical HRF. We propose that fitting GLMs to
edge time series offers a powerful lens into rapid network reconfi-
gurations underlying cognitive operations.

Materials and Methods
Dataset 1
To assess the reproducibility of edge-behavior associations, we examined
fMRI data from two independent datasets collected while participants
performed the gradCPT (Esterman et al., 2013), which measures sus-
tained attention and inhibitory control. The first dataset, dataset 1, was
described in Rosenberg et al. (2016).

Participants
Dataset 1 included 25 participants with normal or corrected-to-normal
vision (13 female, 12 male, age 18–32 years, mean age 22.7 years). One
participant was excluded due to a task lag in one run, leaving 24 partic-
ipants for analysis. Participants gave written informed consent in accor-
dance with the Yale University Human Subjects Committee and were
paid for their participation.
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Experimental design
Participants completed three fMRI runs of the gradCPT. Runs consisted
of four 3 min blocks (225 800-ms trials/block). Blocks were separated
with 32-second rest blocks. Participants were instructed to respond to
city scenes (90% of trials) and to withhold responses to mountain scenes
(10%) with an emphasis on accuracy. An iterative algorithm assigned key
presses to trials as described previously (Esterman et al., 2013). The algo-
rithm first assigned unambiguous button presses, which occurred after
image n was 80% cohered but before image n+ 1 was 40% cohered.
Ambiguous presses were then assigned to an adjacent trial if one of the
two had no response, to the closest trial if both had no response, or to
an adjacent city trial if the other adjacent trial was amountain. If multiple
presses could be assigned to a trial, the fastest response was selected. On
rare occasions, the original algorithm incorrectly assigned responses
from the first trial of a block to the last trial of the preceding block, result-
ing in long RTs. We recalculated RTs from the original dataset.

fMRI acquisition parameters
MRI data were collected at the Yale Magnetic Resonance Research
Center on a 3 T Siemens Trio TIM system using a 32-channel head
coil. Before task runs, an anatomical scan was collected using a
magnetization-prepared rapid gradient echo (MPRAGE) sequence.
Task runs consisted of 824 whole-brain volumes acquired using a multi-
band echo-planar imaging (EPI) sequence: repetition time (TR),
1,000 ms; echo time (TE), 30 ms; flip angle, 62°; acquisition matrix, 84
× 84; in-plane resolution, 2.5 mm2; 51 axial-oblique slices parallel to
the ac–pc line; slice thickness, 2.5 mm; and multiband, 3; acceleration
factor, 2. A 2D T1-weighted image with the same slice prescription as
the EPI images was collected for registration.

fMRI data preprocessing and parcellation
Data were preprocessed using BioImage Suite (Joshi et al., 2011) and cus-
tom Matlab scripts (MathWorks) as described previously (Rosenberg
et al., 2016). The first eight TRs of each run were excluded from analysis.
Motion was corrected using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/). Linear and quadratic drift, mean signal from cerebro-
spinal fluid, white matter, and gray matter were regressed from the
data along with a 24-parameter motion model (6 motion parameters,
6 temporal derivatives, and their squares). Data were then temporally
smoothed with a zero mean unit variance Gaussian filter. Functional
MRI data were then parcellated using the 268-node Shen atlas (Shen et
al., 2013).

Dataset 2
Dataset 2 was described in Yoo et al. (2022). Although rest and other task
runs were also collected, we only analyze gradCPT runs here. Dataset 2 is
available at https://nda.nih.gov/edit_collection.html?id=2402.

Participants
A total of 127 participants performed the gradCPT during two MRI ses-
sions separated by ∼2 weeks on average. The original authors excluded
35 participants for excessive head motion (>3 mm maximum head dis-
placement or >0.15 mm mean framewise displacement), fewer than
120 TRs after censoring, low data quality via visual quality assurance,
or task performance 2.5 SD from the group mean in both sessions, leav-
ing 92 participants (60 females, 32 males, ages 18–35 years, mean age
22.79 years). Exclusion criteria were applied to each run, and participants
were excluded if they had no run for any of the five run types (three tasks,
one rest, and one move-watching). Of these, 65 participants had beha-
vioral performance measures in both gradCPT sessions. We analyze
data from the 58 participants in this group with fewer than 10% of cen-
sored whole-brain volumes. Participants gave written informed consent
in accordance with the Yale University Human Subjects Committee and
were paid for their participation.

Experimental design
Participants completed one 10 min gradCPT run containing 740 trials in
a single block in each MRI session. The task parameters are the same as
those used in dataset 1.

fMRI acquisition parameters
fMRI data were collected at the Yale Magnetic Resonance Research
Center and the Brain Imaging Center at Yale on 3 T Siemens Prisma sys-
tems using a 64-channel head coil. Before task runs, an anatomical
MPRAGE scan was collected. Task runs consisted of 600 whole-brain
volumes acquired using a multiband EPI sequence: TR, 1,000 ms; TE,
30 ms; flip angle, 62°; acquisition matrix, 84 × 84; in-plane resolution,
2.5 mm2; 52 axial-oblique slices parallel to the ac–pc line; slice thickness,
2.5 mm; multiband, 4; and acceleration factor, 1.

fMRI data preprocessing and parcellation
Data were preprocessed using Analysis of Functional NeuroImages
(AFNI version 17.2.07) as described previously (Yoo et al., 2022). The
first three TRs of each run were excluded from analysis. Volumes were
censored if they contained outliers in >10% of voxels or if the
Euclidean distance of the head motion parameter derivatives were
>0.2 mm. Data were then despiked, slice time corrected, and motion cor-
rected. Mean signal from the cerebrospinal fluid, white matter, and gray
matter were regressed from the data along with six motion parameters,
six temporal derivatives, and their squares. Data were then aligned to
the MPRAGE anatomical image and normalized to MNI space. fMRI
data were then parcellated using the 268-node Shen atlas (Shen et al.,
2013). Thirteen nodes were excluded from analysis in at least one partic-
ipant due to imperfect acquisition of the voxels within the region, pre-
dominantly within the frontoparietal and motor networks (5 nodes
each), and within the medial frontal (2 nodes) and subcortical-cerebellar
(1 node) networks.

Analyses
Post hoc analyses and deviations from the preregistration are noted as
such below. Throughout this paper, we use the term first-level model
to refer to within-individual analyses, second-level model to refer to
assessments of significance at the group level within each dataset, and
third-level to refer to assessments of overlap between datasets.
Visualization of connectivity matrices were built using seaborn’s heat-
map plotting functions (Waskom, 2021).

Code accessibility
Analyses were conducted in Python 3.10.2 using a combination of nilearn
(https://nilearn.github.io/stable/index.html), scikit-learn (Pedregosa et al.,
2011), and custom scripts. Our main analyses were preregistered (https://
osf.io/ftzr4/) and the code is available (github.com/henrymj/edge_GLM).

First-level analyses: ROI-based activation
We first asked how univariate fMRI activity in the 268 Shen atlas ROIs
covaried with attention fluctuations following analyses described in
Fortenbaugh et al. (2018). Fortenbaugh et al. (2018) examined how
changes in activity reflected fluctuations in attention and attention lapses
during the gradCPT, replicating original results from Esterman et al.
(2013) in a larger sample (n= 140; one 8 min gradCPT run per partici-
pant). They examined attentional lapses by contrasting pretrial and
trial-evoked activity to erroneous responses to rare mountain scenes
(commission errors, CEs) against correct withholding of responses
(correct omissions, or COs). To characterize attention fluctuations,
they correlated fluctuations in RT with activation time series. These anal-
yses contextualize edge-based results by indicating the reproducibility of
each analysis and demonstrating what edge-based analyses add beyond
traditional ROI-based approaches (Our data and preprocessing steps
differ from that of Fortenbaugh et al. (2018) in a few ways. For example,
Fortenbaugh et al. (2018) regressed out the mean signal from a white
matter and CSF mask, while Rosenberg et al. (2016) and Yoo et al.
(2022) regressed out the global signal, which includes the gray matter.
Therefore, this analysis also assesses whether the results of
Fortenbaugh et al. (2018) are robust to processing differences).

Event-based contrasts. We built a first-level model with the following
regressors: (1) incorrect presses to rare mountain scenes (commission
errors, CEs), which occur when participants fail to inhibit their prepotent
response and indicate a lapse in attention; (2) correct withholding of
responses to rare mountain scenes (correct omissions, COs), indicating
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that participants successfully inhibited their prepotent response and thus
are likely in a focused, high-attention state; and (3) incorrect failures to
respond to common city scenes (omission errors, OEs), which may result
from a variety of sources.

As in Fortenbaugh et al. (2018), we did not model correct responses
to common city scenes (correct commissions) due to their high
frequency.

Stick regressors for each modeled trial type were convolved with the
SPM HRF model and its temporal derivative to create the design matrix.
Because nuisance regressors (motion, drift, white matter, global signal)
were regressed out during preprocessing, they were not included in these
models. To better equate the baseline period between dataset 1, which
included rest breaks between task blocks, and dataset 2, which did not
contain breaks, we included a single block break regressor per run which
lasted the duration of each break in dataset 1.

We fit each participant’s time series for each run to the design matrix
using nilearn’s autoregressive (AR) model, which whitens the data accord-
ing to the autoregressive covariance structure in the time series. Censored
timepoints in dataset 2 were interpolated from adjacent timepoints, and an
additional impulse regressor was included in the model for each censored
timepoint. We also confirmed that excluding censored timepoints and
fitting an ordinary least squares model did not qualitatively change results.
Statistics were averaged across runs within each subject.

Using this model, we computed the four main contrasts of
Fortenbaugh et al. (2018): CE against baseline, CO against baseline,
OE against baseline, and CO−CE. One run from one participant in data-
set 1 is excluded, as they did not have any COs for that run; the partic-
ipant’s remaining two runs were kept. One participant in dataset 2 is
excluded from these contrasts as they did not make any OEs, leaving a
sample size of 57 in dataset 2 for these analyses.

Correlating activity with RT variability. The contrasts above ask how
activity differs between trial types. To characterize how activity fluctuates
with a continuous measure of attentional state, we separately correlated
activation time series with each run’s VTC. The VTC is computed using
the RTs on correct frequent-category trials (i.e., correct presses to city tri-
als or correct commissions) as described previously (Esterman et al.,
2013; Rosenberg et al., 2013). RTs were z scored and converted to abso-
lute values. Trials missing responses (OEs and COs) were linearly inter-
polated from the values of the two surrounding trials. This time course
was then smoothed using a Gaussian kernel with a FWHM of nine trials,
producing the VTC. The VTC was computed separately within each of
the four blocks per run in dataset 1. In dataset 2, each run consisted of
a single block. To account for the lag of the HRF, we shifted the VTC
by 6 s following Fortenbaugh et al. (2018).

We then correlated the VTC with residuals of each ROI’s
BOLD-signal time series after fitting the event-based GLM described
above. Timepoints from the between-block breaks were excised from
the residuals in dataset 1. Correlation values were converted to z values
using Fisher’s transformation to be assessed using our second- and
third-level paradigms below.

Identifying precursors of attention lapses. The above analyses asked
how ROI activity corresponds to attention lapses, task events, and con-
tinuous fluctuations in sustained attention.We next asked whether activ-
ity preceding rare mountain trials predict upcoming COs versus CEs. To
do so, we replicated the trial precursor analysis of Fortenbaugh et al.
(2018), applying the details of their whole-brain analysis. ROI time
courses were linearly interpolated in time to the onset of each trial. For
each CO or CE, the preceding timepoints from −4.8 s (6 trials) to the
onset of the trial were averaged. These preceding averages were averaged
across trials of the same type, and a difference map (CO minus CE) was
generated for each participant. As in the contrast analyses above, one run
from one participant in dataset 1 was excluded, as they did not produce
any COs for that run; the participant’s remaining 2 runs were kept.

First-level analyses: edge cofluctuations
We next asked how edges rather than activity in a single region alone
covary with attention. To this end, we computed edge cofluctuation

time series for a given pair of nodes (ROIs), i and j, following
Faskowitz et al. (2020). Specifically, each ROI’s time series vector (i or j)
was z scored, and the elementwise product between the two standardized
vectors was computed. Mathematically, the edge time series eij is computed
as follows:

eij = (i −�i )
Si

· ( j − �j)
Sj

= Z(i) · Z(j),

where �x is the mean and Sx is the standard deviation across the time series
for node x:

Sx =
�������������∑N

t=0
(xt − �x)2

N − 1

√
and N is the number of timepoints in the time

series.
We replicated all activation analyses with edge (i.e., cofluctuation)

time series as described in detail below.

Relating cofluctuations to attention lapses and salient events. We first
asked how edges covary with attention lapses and fluctuations. To do so,
we built first-level models with regressors for the following trial types:
CEs, COs, and OEs. As in our ROI activity analyses, we computed the
four main contrasts of Fortenbaugh et al. (2018): CE against baseline,
CO against baseline, OE against baseline (We did not mention OE
against baseline in our preregistration, but we included the contrast to
help ground our replication of Fortenbaugh et al. (2018)), and CO−
CE. In addition to these four contrasts, we included a CO+CE contrast,
which, given the structure of the task, is equivalent to a no-go over base-
line contrast or an oddball (i.e., rare mountain trial) versus baseline con-
trast. This analysis allows us to identify whether certain task-based events
(attention lapses, correct inhibition, no-go, and oddball processing) are
accompanied by momentary changes in the functional interactions
between brain regions.

Relating cofluctuations to RT variability. We next explored whether
edges varied systematically with the VTC, the continuous measure of
attention computed from RT deviance (Esterman et al., 2013;
Rosenberg et al., 2013). As in our ROI activity analyses, we correlated
the lag-shifted VTC with edge time series after excising timepoints
from the between-block breaks in dataset 1 and converted the correla-
tions to z values using Fisher’s transformation for group-level
assessment.

In addition to this time-shifted smoothed VTC analysis, we asked
whether a more traditional parametric regressor analysis (Esterman
et al., 2013) might be better powered than the original correlational
approach. Rather than smoothing the VTC with a Gaussian kernel, we
convolved the nonsmoothed VTC with the SPM HRF function and its
temporal derivative and included these in a model with trial event regres-
sors, similar to that described above. We included an event regressor for
each of the four trial types (correct commissions, COs, CEs, and OEs).
A block break regressor was included for dataset 1. We fit this model
to the edge time series and computed the contrast VTC over baseline
(In the preregistration, we also planned to fit a similar model, but with
the VTC demeaned before convolution. However, this transformation
only changes the beta values of the unmodulated event regressors, not
that of the VTC regressor. Because we constrain our focus to the VTC
results to compare with previous literature (Fortenbaugh et al., 2018,
Esterman et al., 2013), we have omitted the demeaned approach).

Identifying precursors of attention lapses in edge cofluctuations. As in
our ROI activity analyses, we asked whether edge cofluctuations
preceding rare mountain trials predict upcoming COs versus CEs.
First, edge time courses were linearly interpolated in time to the onset
of each trial and then averaged across the preceding timepoints from
−4.8 s to the onset of each rare mountain trial. We produced a difference
map (CO−CE) of these average preceding values for each participant.

Second-level significance testing via permutation
We tested the significance of each first-level analyses at the group level
using two different family-wise error rate corrections: (1) max-T for
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both ROI and edge analyses and (2) the network-based statistic (NBS;
Zalesky et al., 2010) for edge analyses. These methods rely on different
assumptions to assess statistical significance. We provide both results
so that other researchers interested in applying edge-based GLMs can
use the one best suited for their research question.

Max-T controls for type 1 error by producing a null distribution of
the maximum test statistics (or minimum p values) across random per-
mutations of the data, to which the observed edge test statistics can be
compared. It makes no assumptions about the relationships between
tests (in other words, about the relationship between edges, or ROIs),
so it can be applied to both ROI activity and edge cofluctuation first-level
maps.

NBS is a graph-specific procedure that also controls for type 1 error
by constructing a null distribution across random permutations of the
data, but it makes the additional assumption that edges that are signifi-
cantly different from the null will be interconnected in subcomponents of
the full graph. This is analogous to the assumption that significant voxels
will be spatially autocorrelated which underlies cluster correction in tra-
ditional fMRI contrasts. Thus, the null distribution for NBS is formed of
maximum subcomponent sizes across permutations. In both cases, we
used the sign-flipping paradigm from FSL’s randomise algorithm
(Winkler et al., 2014) to randomly permute edges or ROIs.

First, we fit a second-level model to the first-level outputs and
obtained an observed test statistic for each edge. Because this work is
exploratory and we have no directional hypotheses, we chose to use
the F statistic. We then ran 10,000 permutations of the second-level
model by randomly flipping the signs of the intercept column (i.e., mul-
tiplying each participant’s vector of edge statistics by 1 or −1) and com-
puting new F statistics for each edge.

To build the max-T distribution, we recorded the largest F value. To
build the NBS distribution, we thresholded the permutation’s
second-level graph to edge-behavior associations with p < 0.01 and
recorded the size of the largest fully connected component, defined by
the number of edges in the component (Although we preregistered
0.05 as our initial threshold, 0.01 is more in keeping with other works
using NBS (Zalesky et al., 2010, Serin et al., 2021) and should reduce
the number of false positives in the final components, making them
more interpretable). For edges, the max-T and NBS null distributions
were computed in parallel. The observed second-level maps were then
thresholded using these two null distributions, producing two sets of
results. For max-T, observed ROI-behavior or edge-behavior associa-
tions were thresholded to those with F statistics greater than the 95th per-
centile of the null distribution. For NBS, observed edge-behavior
associations were thresholded to those with p < 0.01, and any compo-
nents larger than the 95th percentile of the NBS null distribution were
retained.

Third-level analyses for edges: between dataset comparisons via
permutation
The reproducibility of the ROI results can be assessed via comparison
with previous literature, such as Esterman et al. (2013) and
Fortenbaugh et al. (2018). In contrast, there is no existing work to com-
pare the edge results against. Therefore, we rely on comparisons between
our two independent datasets to assess the reliability and reproducibility
of these results. To assess whether the edges identified as significant were
consistent across datasets, we relied on a permutation test with slight
differences in implementation to account for the different assumptions
of our two second-level paradigms.

To assess overlap in the max-T results, we recorded the number of
overlapping significant edges between our two datasets. Across 10,000
permutations, we shuffled the locations of significant edges in both data-
sets and recorded the number of overlapping edges.

To assess overlap in the NBS results, we repeated the above process,
but we shuffled node locations rather than edges, as NBS makes assump-
tions about the connections within components. Shuffling nodes there-
fore randomizes edge locations while preserving the structure of the
observed components.

For both max-T and NBS, a result was considered to have significant
consistency if the number of observed overlapping edges was larger than

the 95th percentile of the null distribution of overlapping edges (Here we
note two differences from our preregistration. First, the permutation test-
ing approach differs from that described in our preregistration, which
involved assessing the overlap of significant edges between datasets by
assuming a hypergeometric distribution. The nonparametric permuta-
tion testing approach reduces the number of assumptions required
when assessing significance with this newmethod. Second, in our prereg-
istration we described assessing which networks contained more signifi-
cant edges than expected by chance and comparing the overlap of
networks across datasets. However, this approach is redundant with test-
ing the overlap of edges across datasets and describing the distribution of
overlapping edges across networks).

Assessing dataset-level overlap with edges underlying individual
differences in attentional control
This work aims to identify edges associated with sustained attentional
performance by looking for differences from the null (i.e., no association)
at the group level. In contrast, previous work has identified edges associ-
ated with attentional performance by examining individual differences in
performance. Rosenberg et al. (2016) applied connectome-based predic-
tive modeling (CPM; Finn et al., 2015; Shen et al., 2017) to predict indi-
viduals’ overall gradCPT performance (d′). CPM uses a cross-validation
approach to identify edges whose strengths are most positively or nega-
tively correlated with attentional performance. The set of most positively
correlated edges is termed the high-attention network (HAN), and the
set of most negatively correlated edges is termed the low-attention net-
work (LAN). CPM identifies the HAN and LAN in a training set of
data and then fits a simple linear model to that training set to predict
d’ for a given individual as the weighted combination of their average
high-attention edge strength and their average low-attention edge
strength. This model is then tested on held out data.

In this exploratory analysis, we asked whether the edges identified by
our group-level approach overlapped with those identified via CPM. To
do this, we assessed the overlap between preregistered HAN and LAN
edges and the second-level results from three analyses isolating atten-
tional control: (1) the CO−CE contrast, (2) the CO−CE precursor anal-
ysis, and (3) correlations with the VTC. We focused on overlap with
NBS-based second levels, as the max-T results produced very sparse
graphs. Because the CPM edges were identified in dataset 1, we examined
the results for each dataset separately and focus on significant overlap
between the CPM edges and dataset 2 results.

We assessed significant overlap between second-levels and CPM
edges in nearly the same manner that we assessed significant overlap
between datasets (see above, Second-level significance testing via permu-
tation). We first recorded the observed overlap with the following
assumptions. We assumed that positively deflected edges for CO−CE
(for either the contrast or precursor analysis) should map onto HAN
edges and negatively deflected edges should map onto LAN edges. In
contrast, we expect HAN and LAN edges to map onto the edges corre-
lated with the VTC differently. Increasingly positive VTC values reflect
increasingly erratic responding, associated with reduced attention; edges
which are positively correlated with the VTC reflect increased synchrony
with reducing attention. Thus, we expect that edges which are positively
correlated with the VTC should map onto LAN edges and edges which
are negatively correlated with the VTC should map onto HAN edges.
Then, across 10,000 permutations, the second-level maps were permuted
at the node level to preserve the subcomponent structure and overlap
with the CPM edges were recorded. Observed overlap was assessed
against this null distribution.

Comparing observed edge results to ROI-based predictions
Do edge-based GLMs reveal new information about brain–behavior
relationships, or are they redundant with the results of traditional
ROI-based GLMs? To ask this question, we investigated whether the
results based on edge cofluctuation time series contained information
distinct from those contained in ROI time series and traditional
analyses. In each dataset, we compared our second-level edge-based
results against theoretical edge second levels predicted from ROI
activity. To predict the edge-based results from the ROI results, we
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converted each first-level ROI map to a “theoretical edge map” using
the following formula:

êij = sign(ti · tj) ·
�������|ti · tj|

√
,

where t is the t score for a given node (i or j in this example).
This formula captures a few straightforward predictions. First, if both

nodes are deflected (i.e., have nonzero t scores), their edges are likely to
also be deflected. Second, if both nodes are deflected in the same direc-
tion, this will likely lead to a positive deflection in the edge, and if the
nodes are deflected in opposite directions, this will likely lead to a nega-
tive deflection in the edge.

We analyzed these maps using the second-level tests described above
and compared contrasts with significant overlapping edges between
datasets in both the ROI-based and edge-based maps. We predicted
that there may be pairs of regions whose activation time series are not
significantly deflected from baseline in response to task events, yet whose
edge cofluctuation time series were.

Estimating HRF of edge time series
Though the timing of edge fluctuations should still be constrained by the
speed of the HRF, it is possible that the standard SPM HRF provides a
poor description of how edge time series are deflected by events. In
this post hoc analysis, to estimate the HRF of edges in response to events,
we employed finite impulse response (FIR) modeling and k-means clus-
tering. We performed this estimation procedure using dataset 1 so that
the estimated response functions may be applied to dataset 2 should
these response functions differ in form from the HRF.

We fit our trial-type model to both the ROI and edge time series for
each participant’s first and second runs of dataset 1 separately. Rather
than convolving the trial-type stick regressors with the HRF, we used
31 separate impulse regressors per trial-type (one for each TR of the
first 30 s after an event). To increase power, we focused on parameter
estimates for the CO+CE contrast, which includes the most data.

We then ran a group-level test for each ROI or edge at each timepoint
and averaged across participants. Including only those ROIs or edges with
a value significantly different from 0 for at least one timepoint produced
similar HRFs to using all ROIs or edges. To avoid separating response
functions with the same structure but different directions, we multiplied
each time series by the sign of its largest magnitude value (i.e., if an ROI
or edge’s largest value was negative, the whole time series was flipped).

We then clustered the ROI or edge time series using k-means clus-
tering in participants’ first and second runs separately. We found an
optimal number of clusters by testing all values of K between 2 and
30 (inclusive) and identifying the elbow in the distortion function
across K values (yellowbrick; https://www.scikit-yb.org/en/latest/api/
cluster/elbow.html). We took the mean, or centroid, of each cluster
to be a representative HRF. We assessed the consistency of clusters
by examining the adjusted mutual information (AMI) between the
partitions and comparing observed AMI to a null distribution built
by shuffling the cluster labels. Finally, we compared ROI and edge
clusters to canonical network labels defined in Finn et al. (2015; e.g.,
DMN, frontoparietal network) to test whether ROIs and edges from
the same network tended to show hemodynamic response profiles
that clustered together.

Results
Activation patterns replicate previous work on sustained
attention
In both datasets, the three baseline contrasts produced a similar
pattern of results to that reported in Fortenbaugh et al. (2018;
Fig. 1A; compare with their Fig. 4). COs were associated with
greater activity in task-positive frontal and parietal regions previ-
ously associated with vigilant attention (Langner and Eickhoff,
2013) and lesser activity in regions of the DMN often associated
with task-irrelevant or internally directed thought (Buckner et al.,
2008, 2019). As in Fortenbaugh et al. (2018), lateral visual cortex

activity increased with COs whereas medial visual cortex activity
decreased. CEs were associated with similar activity patterns,
potentially reflecting attention capture by and processing of
rare target images. In addition, both trial types likely involve
attempts at inhibitory control processes. OEs, which occurred
rarely, were again accompanied by similar activity patterns
including increased activity in the middle frontal gyrus, inferior
parietal lobule, and insula and decreased activity in ventromedial
prefrontal cortex. To facilitate visual comparison with the results
of Fortenbaugh et al. (2018), we projected the ROI activation
results onto the fsAverage surface mesh from FreeSurfer, using
nilearn’s functions vol_to_surf and plot_surf_stat_map.
Vertices were assigned the value of the nearest voxel. To get a
sense of the ROI boundaries on this surface projection, we
mapped the ROI labels to a set of six circularly repeating, highly
contrasting colors and surface projected this mapping in the
same manner as well (Fig. 1C).

Contrasting COs with CEs (CO−CE) in dataset 2 replicated
Fortenbaugh et al. (2018). Successful inhibition was associated
with more activity in subcortical and cerebellar regions and
visual and inferior parietal areas presumably driven by greater
attention-to-task. Unsuccessful inhibition, on the other hand,
was associated with greater medial prefrontal and dorsal ante-
rior cingulate cortex and insula activity, potentially reflecting
error processing (Dali et al., 2023). A sparser CO−CE map
in dataset 1 suggests that this smaller sample may be underpow-
ered to detect effects consistent in Fortenbaugh et al. (2018) and
dataset 2, although this interpretation of the null effect is
speculative.

Associations between continuous attention fluctuations and
ROI activity replicated the overall pattern of results observed in
Fortenbaugh et al. (2018; Fig. 1B; compare with their Fig. 7).
In both datasets, the smoothed, lag-shifted VTC was negatively
correlated with activity in regions of the DMNs, replicating pre-
vious associations between higher DMN activity and in-the-zone,
more practiced sustained attention task performance (Mason
et al., 2007; Esterman et al., 2013, 2014; Kucyi et al., 2017; Song
et al., 2022). This relationship is hypothesized to reflect the fact
that, during “in-the-zone” attentional states, good performance
may be less effortful and need not rely on the suppression of
DMN activity (Esterman et al., 2013). In contrast, higher activity
in task-positive frontal and parietal regions was positively corre-
lated with RT variability, potentially reflecting more effortful top-
down attention during erratic periods of performance (Esterman
et al., 2013; Kucyi et al., 2017; Fortenbaugh et al., 2018).

Pretrial activity did not significantly vary before COs versus
CEs in dataset 1. In dataset 2, greater frontal and parietal activity
preceded COs whereas greater ventromedial prefrontal cortex
activity preceded CEs. This aligns with previous work suggesting
that, while “task-positive” frontoparietal activity may decrease
and “task-negative” DMN activity may increase during
in-the-zone attentional performance, attention lapses can occur
when frontoparietal activity is too low or DMN activity is too
high (Esterman et al., 2013) (Whereas Esterman et al. (2013)
observed more DMN and less DAN activity before CEs,
Fortenbaugh et al. (2018) replicated the pretrial DMN but not
DAN effect. We did not formally test for replication of these
network-level effects as our analyses were performed at the
ROI level using the Shen 268-node atlas. Shen atlas nodes have
been grouped into a DMN mask but not a DAN mask).
Notably, however, both datasets tested here have fewer partici-
pants than Fortenbaugh et al. (2018) and may be underpowered
for detecting attention lapse precursors.
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Edge-GLM reveals significant fluctuations in connectivity
across networks
Associations between ROI activity and sustained attention perfor-
mance generally replicated previous associations between in-the-
zone performance and increasedDMNanddecreased frontoparietal
activity while providing tentative support for the idea that too much
DMN activity or too little frontoparietal activity can cause lapses.
Errors caused by these lapses are accompanied by greater activity
in regions associated with error processing, and rare targets in gene-
ral are associated with more task-positive and less DMN activity.

Together, these findings and the body of work they replicate
motivate the prediction that changes in interactions within and
between networks of regions—not just individual regions them-
selves—vary with attentional performance. This hypothesis is not
directly testable with traditional dynamic FC analyses that rely on
measuring region interactions in windows of BOLD-signal time
series. Thus, we appliedGLMs to edge time series to assess relation-
ships between attention task events and performance at the level of
region pairs.

To do so, we applied the same analyses described previously to
edge rather than BOLD-signal time series. We asked whether

edge time series reliably covaried with task or cognitive events
and assessed five contrasts reflecting attention lapses/inhibitory
control failures (CE vs baseline), successful inhibition (CO vs
baseline and CO−CE), failures to respond (OE vs baseline),
and rare target processing (CO+CE vs baseline) using traditional
trial-type regressors (Figs. 2, 3).

We first assessed edges that consistently deflected with COs.
Activation results revealed that COs were associated with more
frontoparietal and lateral visual cortical activity. The edge-based
GLM revealed edges associated with these networks and others.
Max-T permutation testing identified two reliable edges (where
“reliable” refers to significant deflection in both datasets; proba-
bility of overlap given the number significant edges in each data-
set is p= 0.004), both of which were negative deflections between
the motor and visual association networks. NBS permutation
testing identified 734 edges common to both datasets (p= 1/
10,001). These consisted of negative deflections between the
motor and visual and subcortical-cerebellar networks but posi-
tive deflections betweenmotor andmedial frontal, frontoparietal,
and DMNs. Regions in these higher-order association networks
also showed positive deflections with visual networks in response

CO - CE Omission ErrorsCommission ErrorsCorrect Omissions

Dataset 1 (n=24)
Dataset 2 (n=58)

B)   VTC Correlation

C)  ROI Parcellation D)  Network Definitions

Medial-Frontal
Frontoparietal
Subcortical-Cerebellar
Default
Motor
Visual I
Visual II
Visual Association

Figure 1. ROI-based replication of activation results. A, ROI-based activation contrasts for trial-type events. Each column reflects one of the four main event-based contrasts of Fortenbaugh et
al. (2018) or (B) the correlation between the VTC and ROI time series. Each row reflects the dataset-specific second levels, which were thresholded using a max-T permutation testing approach
(see Materials and Methods, Second-level significance testing via permutation). Note that because these analyses were conducted at the ROI level and then surface projected, there are shared
contours to the activation sites. C, Shen atlas ROIs surface projected with high-contrast colors. Each ROI was mapped onto one of six highly contrasting colors around the color wheel (blue, green,
yellow, orange, red, purple) in a circularly repeating manner (e.g., regions 1 and 7 are blue, regions 2 and 8 are green, and so on). Each vertex was matched with the label of the nearest
voxel. D, Eight networks surface projected following a similar procedure to C. Colors were chosen to match that of Scheinost et al. (2016).

Jones et al. • Edge-Based GLMs Capture Attention Fluctuations J. Neurosci., April 3, 2024 • 44(14):e1543232024 • 7



to COs. Negative deflections within the medial frontal, fronto-
parietal, default mode, and motor networks—and a similar num-
ber of positive and negative deflections within the
subcortical-cerebellar network—also accompanied COs. Thus,
COs tended to be accompanied by increased cofluctuation
between higher-order association networks and motor and visual
regions and decreased cofluctuation between motor, visual, and
subcortical-cerebellar networks. This may reflect attention cap-
ture by rare target stimuli and/or the engagement of top-down
attentional control leading to successful inhibition.

Unsuccessful inhibition (CE against baseline) identified 0
overlapping edges using the max-T approach and 608 overlap-
ping edges (p= 1/10,001) using the NBS approach. As in the
activation-based results, the overall pattern was similar to that
of COs, with some differences. For example, more edges within
the medial frontal and frontal parietal networks were negatively
deflected, whereas more edges within the subcortical-cerebellar
network were positively deflected. The medial frontal network
also showed more negative deflections with the frontoparietal
and DMNs and positive deflections with the motor and visual
networks.

We isolated successful inhibitory control and sustained atten-
tion by comparing COs against CEs (CO−CE). Activation anal-
yses found increased activity in subcortical, cerebellar, visual, and
inferior parietal regions in response to successful inhibition but
increased activation in control and error processing related
regions in response to unsuccessful inhibition. Max-T permuta-
tion testing on edges did not identify overlap between the data-
sets. NBS permutation testing identified 90 overlapping edges
(p= 1/10,001), which primarily involved regions of the
subcortical-cerebellar and medial frontal networks. Successful
inhibition was associated with more positive deflections within
medial frontal and visual association networks andmore negative
deflections within the subcortical-cerebellar network. Successful
inhibition was also associated with more negative deflections
between the medial frontal network and the frontoparietal,
subcortical-cerebellar, motor, and visual association networks
and more positive deflections between the subcortical-cerebellar
network and every other network except for the medial frontal
network. Speculatively, this pattern of results may suggest that
greater medial frontal network segregation (more positive
within- and negative between-network cofluctuation) and
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Figure 2. Cross-network distribution of reliable (i.e., significant in both datasets) edges from trial-type contrasts, based on second-levels computing using NBS permutation testing. Each of the
first four matrices reflects the overlap of significant edges for a given contrast: COs, CEs, rare probe trials (CO + CE), and successful inhibitory control (CO− CE). The final matrix reflects edges that
were positively or negatively correlated with the VTC. Each heat map shows the number of edges in a given set of network-network connections that were significant for a given analysis. The left
side of each heatmap shows the number of edges with positive deflections, while the right side of each heatmap shows the number of edges with negative deflections.
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greater subcortical-cerebellar network integration (more nega-
tive within- and positive between-network cofluctuation) accom-
pany successful relative to unsuccessful inhibition.

We contrasted OEs (incorrectly withholding responses to
common city trials) against baseline. Activation patterns found
increased activity in the middle frontal gyrus, inferior parietal
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Figure 3. Dataset-specific second-level results for each of the five contrasts and the correlation with the VTC. Within each results matrix, the left half reflects dataset 1 and the right half
reflects dataset 2. Colors reflect thresholded t scores, with blue indicating negative values and red indicating positive values. The top set reflects component-level thresholding using NBS
permutation testing while the bottom reflects edge-level thresholding using max-T permutation testing.
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lobule, and insula and decreased activity in the ventromedial pre-
frontal cortex. While max-T–based permutation testing did not
identify any overlapping edges, NBS-based permutation testing
identified 58 overlapping edges (p= 1/10,001). The edges con-
sisted mostly of positive deflections within the motor network
and negative deflections distributed across the brain networks.
Most of the negatively deflected edges were associated with the
medial frontal network, both within-network and with the
DMN and subcortical-cerebellar network or were associated with
connections between the motor network and the subcortical-
cerebellar and the visual I network.

Lastly, we examined rare trials against baseline (CO+CE).
Max-T identified seven overlapping edges (p= 1/10,001). These
consisted of negative deflections between the motor network
and both the visual association and subcortical-cerebellar net-
works, along with positive deflections between the subcortical-
cerebellar network and both high-level vision networks and the
frontoparietal network. NBS permutation testing identified
1,252 overlapping edges (p= 1/10,001), with patterns of deflec-
tions roughly combining those seen separately in the CO against
baseline and CE against baseline contrasts.

Edges covary with continuous fluctuations in attentional
states across time
We investigated whether edge fluctuations track continuous
fluctuations in attentional states in two ways. For each, we began
by computing the VTC, a measure of attentional focus (Esterman
et al., 2013; Fortenbaugh et al., 2018). In the first analysis, we rep-
licated Fortenbaugh et al. (2018)’s analysis by correlating each
edge time series with the VTC, shifted by 6 s to account for
hemodynamic lag. We transformed the correlations into z scores
via Fisher’s transformation and applied our second-level and
between-group analyses. While max-T permutation testing did
not identify an overlapping set of edges, NBS-based permutation
testing identified a significant overlapping set in both the corre-
lation approach (n = 18; p= 0.002). Most correlations with the
VTC were with edges within and between the visual I network.
Edges within this network and with the visual association net-
work were positively correlated with VTC values, while edges
with the subcortical-cerebellar network were negatively corre-
lated. There was some evidence of the involvement of higher-
order association regions: a DMN-motor edge was positively cor-
related with the VTC while two frontoparietal-motor and
frontoparietal-subcortical-cerebellar edges were negatively corre-
lated. This suggests that, as attention waned, cofluctuations
between frontoparietal, vision, and motor production networks
became increasingly negative, while cofluctuations within vision
networks and with the DMN became increasingly positive. In
contrast, increases in attention are associated with increased
FC between frontoparietal, vision, and motor production net-
works. The second planned parametric regressor analysis did
not identify any significant edges using max-T or any signifi-
cantly large components using NBS in either dataset.

Edges may not vary preceding successful versus unsuccessful
responses
We examined edge time series preceding COs and CEs in
response to rare mountain trials (Fortenbaugh et al., 2018). We
averaged the preceding 4.6 s before each CO and CE trial and
took the difference between trial types for each participant.
Max-T–based permutation testing did not identify significant
differences in either dataset. NBS-based permutation testing
also did not identify any significantly different subcomponent

in dataset 1 but did identify a subcomponent containing 621
edges in dataset 2. These included both positive and negative
deflections within the subcortical-cerebellar and motor networks
as well as between these networks and higher-order association
and visual networks.

Edges correlated with attentional fluctuations support
individual performance predictions
We assessed whether edges that were significantly deflected in
three key analyses isolating attentional control overlapped with
edges previously identified as underlying individual differences
in sustained attention and attentional control using CPM
(Rosenberg et al., 2016). We selected the NBS-thresholded sec-
ond levels of (1) the CO−CE contrast, (2) the CO−CE precur-
sor analysis, and (3) correlations with the VTC. Because the CPM
edges were originally identified in dataset 1, we focus on overlap
with second-level results in dataset 2.

Neither of the CO−CE analyses (contrast and precursor
analyses) identified a significantly overlapping set of edges (con-
trast, n= 32, p= 0.28; precursor, n= 16, p= 0.17). In contrast,
there was significant overlap between the edges that correlated
with the VTC and the attention networks identified via CPM
(n= 55, p= 1/10,001; Fig. 4). This overlap analysis was built on
the assumption the HAN edges should map onto edges nega-
tively correlated with the VTC and LAN edges should map
onto edges positively correlated with the VTC (see Materials
and Methods, Assessing dataset-level overlap with edges under-
lying individual differences in attentional control). Only edges
matching these mappings were considered during the permuta-
tion test. Of the 58 edges identified as overlapping between the
VTC second-level and the CPM edges, 55 matched the mapping.
A chi-squared test confirmed that the two discretizations (HAN/
LAN and positive/negative correlations) were dependent (χ2Yates =
42.68; p= 6 × 10−11), supporting our assumption. HAN/nega-
tively correlated edges were largely distributed across edges
between frontal networks and motor/visual networks (Fig. 4).
In contrast, LAN/positively correlated edges were distributed
across subcortical-cerebellar, motor, and visual association
networks.

Edge fluctuations can be systematically mispredicted by ROI
activation
To test whether the information captured by our edge time series
analysis was redundant with information from traditional ROI
activation analyses, we fit the ROI time series with the contrast
models introduced above. We then converted the first-level
results to predicted edge results by multiplying the t scores for
each pair of ROIs and taking the signed square root (see
Materials and Methods, Comparing observed edge results to
ROI-based predictions). We applied our second- and third-level
comparisons to these predicted edge values and identified edges
predicted to be nonsignificant in either dataset but in reality sign-
ificant in both datasets.

Across the five event-based contrasts within our NBS-based
second-levels, 19–33% of all edges that were significant in both
datasets were not predicted to be significant in either dataset
based on their activation alone. This is not because the
ROI-based predictions produced more sparse maps than the
observed edge maps. In each dataset and in each of the five con-
trasts, as many or more edges were identified as significant when
predicted from ROI activation maps compared with being actu-
ally observed. With the max-T permutation paradigm, this
increase ranged from 0% (an equal number of edges were
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identified as significant) to 4,317% (17 significant edges observed
vs 751 predicted) in dataset 1 and from 772% (22 vs 192) to
1,361% (359 vs 5,248) in dataset 2. The increase was smaller
when using the NBS permutation paradigm but still substantial
(∼100–200%). Thus, edge-based GLMs are related to but not
redundant with activation analyses.

Edge responses are similar to traditional HRFs
The above results indicate that we are able to capture changes in
edge time series using models assuming the canonical HRF.
However, it is possible that not all edge responses are described
by the HRF, meaning that model designs may not be optimized.
To test this, we estimated ROI and edge responses to rare trials ver-
sus baseline using FIRmodeling of data from run 1 of dataset 1 (see
Materials and Methods, Estimating HRF of edge time series).

Nine clusters were identified for succinctly capturing the ROI
HRFs produced by our contrast (Fig. 5). Six of the centroids,
accounting for 165 ROIs (61.6% of all ROIs), were shaped as
the canonical HRF and varied mostly in amplitude and timing
(peaking between 4 and 6 s). The remaining three centroids,
accounting for 103 ROIs (38.4%), were shaped similarly to the
canonical HRF but decayed slowly after peaking, rather than
dropping roughly in proportion to the activation rate. Two of
these three centroids, accounting for 84 ROIs, had a somewhat
late peak (8 and 10 s). ROI response functions similar to these
centroids would likely be partially matched by the canonical
HRF, especially when modeled with its temporal derivative as
an additional regressor, so we may assume that the canonical
HRF is roughly appropriate for all ROIs.

Nine clusters were also identified for succinctly capturing the
edge HRFs produced by our contrast (Fig. 5). Four of these,
accounting for 15,923 edges (44.5% of all edges), appeared to
match the canonical HRF with slight shifts in amplitude and tim-
ing (peaking between 2 and 9 s). Three of the remaining five

centroids, accounting for 13,289 edges (37.1%), were also shaped
similar to the canonical HRF but with larger lags in their timing
(peaking between 14 and 27 s). The final two centroids were not
of the canonical HRF shape. One centroid, accounting for 4,110
edges (11.5%), contained two distinct peaks, one at 5 s, and one at
27 s. Edge response functions similar to this centroid would likely
be partially matched by the canonical HRF, which peaks∼5 s and
returns to baseline ∼20 s after stimulus onset. The final centroid,
accounting for 2,456 edges (6.9%), slowly rose, peaking ∼18 s,
and then slowly fell. Thus, the canonical HRF, along with its tem-
poral derivative, likely provided a strong-to-partial match for
44.5–56% of edges.

To assess the reliability of these results, we repeated the above
analyses using run 2 data from dataset 1. An elbow of 10 clusters
was identified for the ROI HRFs, while nine clusters were again
identified for the edge HRFs. We assessed whether the cluster
labels were significantly similar between runs by computing the
AMI (Vinh et al., 2010). We assessed the significance of the
mutual information by permuting the cluster labels 10,000 times
and recomputing the AMI. Both clusterings were significantly
similar across runs (ROI-AMI= 0.223, p=1/10,001; edge-AMI=
0.004, p=1/10,001). We also asked whether these cluster labels
were related to network definitions by computing the AMI
between the ROI clusters and eight canonical network labels
(Finn et al., 2015) and between the edge clusters and the
network-network labels. For both runs, the clusterings were sign-
ificantly similar to the network definitions (ROIs: both AMIs >
0.075, ps = 1/10,001; edges: both AMIs > 0.009, ps = 1/10,001).

It is important to note that, though the canonical HRF is only
appropriate for a smaller subset of edges compared with ROIs,
this should only produce false negatives among edges with non-
canonical response functions, not false positives. This suggests
that the number of edges that were not predicted from univariate
activity above may be an underestimate.
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Discussion
We examined whether traditional fMRI GLM analyses can be
applied to edge cofluctuation time series to capture
moment-to-moment fluctuations in attention. We assessed the
replicability of results across two independent datasets in which
participants performed the gradCPT (Rosenberg et al., 2016; Yoo
et al., 2022), which enables examination of attention both at the
event level and via continuous measures across time. In general,
activation results replicated previous empirical findings
(Esterman et al., 2013; Fortenbaugh et al., 2018). Cofluctuation
results extended the activation results by identifying new sets
of edges that covary with attention and overlap with networks
that predict individual differences in sustained attention. To
assess the robustness of previous activation-based results and
contextualize our edge-based results, we replicated the univariate
activity analyses of Fortenbaugh et al. (2018). Contrasts against
baseline all produced results aligning with Fortenbaugh et al.
(2018). Correctly withheld responses to rare probe trials (COs),
CEs, and both together were associated with increased activity
in regions associated with vigilant attention and decreased activ-
ity in the DMN. They were also associated with increased lateral
visual cortex activity and decreased medial visual cortex activity.
This aligns well with a meta-analysis of 11 Go/No-go fMRI stud-
ies contrasting No-go and Go trials which implicated the bilateral
putamen, middle occipital gyrus, insula, inferior parietal lobule,
pre-SMA, middle frontal gyrus, the right superior and inferior
frontal gyri, and the left fusiform gyrus (Simmonds et al.,
2008). Erroneous withholding on frequent nonprobe trials
(OEs) was also associated with regions connected to error pro-
cessing including the inferior parietal lobule, insula, middle fron-
tal gyrus, and ventromedial prefrontal cortex.

Replicating results of Fortenbaugh et al. (2018), successful
withholding of responses (CO−CE) was associated with greater

activity in subcortical, cerebellar, visual, and inferior parietal
areas and lesser activity in the medial prefrontal cortex, dorsal
anterior cingulate cortex, and insula activity in dataset 2 (but
not dataset 1). Prior work found increased cuneus, caudate,
and inferior frontal activity for successful stopping and increas-
ing anterior cingulate and insula activity with unsuccessful stop-
ping (Chevrier et al., 2007), both of which have previously been
associated with error monitoring and adjustments of control
(Ramautar et al., 2006; Shenhav et al., 2016; Dali et al., 2023).
Our CO−CE contrast then likely captures regions contributing
to appropriate motor execution or withholding (subcortical, cer-
ebellar, and inferior parietal areas) during successful inhibition
and error processing and control adjustments (medial PFC,
dACC, insula) following unsuccessful inhibition.

Results also replicated associations between continuous
fluctuations of attention and ROI activity, revealing negative cor-
relations between the VTC and DMN activity and positive corre-
lations between the VTC and task-positive frontal and parietal
region activity. Results did not fully replicate pretrial differences
between COs and CEs. There were no significant pretrial activity
differences in dataset 1, though in dataset 2 the patterns of activ-
ity aligned with previous work suggesting that lapses occur when
frontoparietal activity is too low or DMN activity is too high
(Esterman et al., 2013). Overall, activation contrasts replicated
previous work and identified regions implicated in visual pro-
cessing, motor execution, error processing, control adjustments
and top-down attentional modulation.

The only two univariate analyses that did not qualitatively
replicate prior results in both datasets were the CO−CE and
pre-CO versus pre-CE contrasts. This is perhaps not surprising
given the rarity of mountain trials (10%) and the fact that these
are difference contrasts. In addition, the trial precursor results
have smaller effect sizes than the standard contrast approach
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(compare the t values of Figs. 4D and 5B in Fortenbaugh et al.,
2018). Thus, we may be underpowered for detecting the effects.

While the univariate results can be interpreted in terms of net-
works, they cannot capture changes in network connectivity that
occur without a change in overall activation. To address this lim-
itation, we applied the above fMRI analyses to edge time series to
ask whether changes in the cofluctuation of pairs of regions or
networks are involved in changes in sustained attention. These
edge-based results both aligned with and expanded upon the uni-
variate activation results (Fig. 2). Contrasts with sparse univariate
results also produced sparse edge results. In addition, though not
captured by this overlap analysis, dataset 1 always produced
sparser edge results than dataset 2 (Fig. 3), as it did for the uni-
variate results. These reliable edges were distributed across the
brain at the network level, though this distribution was not uni-
form. Many of the edges connected networks identified by the
activation contrasts, specifically the subcortical-cerebellar, fron-
tal, and DMNs. The edges within and between these networks
were variably deflected, both matching with predictions (e.g.,
positive deflections within the medial frontal network for COs
vs CEs) and extending beyond the previous literature (e.g., neg-
ative deflections between medial frontal and motor networks in
the same contrast). Deflections between frontal and subcortical-
cerebellar regions and regions in the motor and vision networks
emphasize the integration of processing from sensory input all
the way to response execution during successfully sustained
attention and point to the need to examine network connectivity
more directly.

Edges that correlated with VTC produced striking results.
First, reliable edges were only found in networks associated
with sensory processing and motor production, namely, the
visual, motor, and subcortical-cerebellar networks (Fig. 2), rather
than association networks such as the frontal networks and the
DMN. In addition, those significantly correlated edges in dataset
2 also significantly overlapped with edges identified using CPM
in dataset 1 to identify individual differences in gradCPT perfor-
mance (Fig. 4). A few features of this result are worth noting.
First, the edge approach identifies edges that consistently vary
with the VTC. In contrast, the CPM approach relies on variance
across the group. Although this did not need to be the case, the
same edges that track attention fluctuations at the group level
also scale with individual differences in overall performance.
Second, though the edges which were reliable across datasets
were identified in sensory and motor production networks, the
edges overlapping between dataset 2 and the CPM edges also
included many connections with the medial frontal and fronto-
parietal networks. This suggests again that dataset 1 may have
been underpowered and failed to capture deflections in these
frontal networks, previously implicated in sustained attention
(Fortenbaugh et al., 2017).

We found that 19–33% of the reliable edges identified via con-
trast analyses were not predicted from univariate ROI activity,
despite ROI activity predicting deflections in more edges for
each contrast than were actually identified. Therefore, these
edge analyses are extracting reliable and novel information about
rapid network reconfigurations underlying fluctuations in cogni-
tive processes. Another way to frame this result is that our
approach can capture edge deflections driven by task- or
event-evoked ROI activity and/or evoked changes in cofluctua-
tion independent of task activation. To many researchers, both
of these reflect meaningful neural responses that should be inves-
tigated and incorporated into theories relating brain activity to
cognition. At the same time, other work has attempted to isolate

the interaction between FC and cognitive events, termed psycho-
physiological interactions (PPIs, Friston et al., 1997). PPI studies
how FC changes in a given region by modeling its response to a
task, its relationship with a given seed region, and the interaction
of that seed region with the task (O’Reilly et al., 2012). While PPI
is well powered for detecting interaction in block designs, it is
generally underpowered in event designs (Cisler et al., 2014).
In contrast, this work isolates edge deflections driven by task
events. Future work may compare this edge-based approach
for examining event-based interactions to PPI and other methods
such as the betas series method (Cisler et al., 2014).

Though this work identified reliable and novel edges while
making minimal assumptions about how edge cofluctuations
may differ from univariate activity, there are many options for
optimizing this workflow and increasing the power of these anal-
yses. First, we found that the HRF is appropriate for only a subset
of edges. Other work has also used a canonical HRF function to
examine edge time series “events,” high amplitude moments that
explain a large amount of variance in the connectomes between
individuals, and found moderate correlations between a con-
volved movie-event time series and edge events time series
(Tanner et al., 2023). Future work can compare different
response functions, including agnostic finite impulse regressors,
as well as smoothed time series to see which produces the most
reliable results. Using more flexible response functions would
also alleviate the issues produced by network-level differences
in response functions, which we also saw in this work.

This work also compared max-T and NBS thresholding
approaches for identifying significantly deflected edges. Max-T
was quite conservative, identifying few edges consistent across
datasets. In contrast, NBS identified a reliable set of edges for
every contrast where a significant subcomponent was identified
in each dataset. However, the overlap found between datasets
was relatively small, suggesting that NBSmay not be conservative
enough. At best, a significant NBS component can be interpreted
as containing at least one significant edge (Rosenblatt et al., 2018;
Sassenhagen and Draschkow, 2019). We chose a significance
threshold of 0.01, in keeping with the creators of NBS (Zalesky
et al., 2010; Serin et al., 2021), but this may still produce many
false positives. Another work examining cluster correction meth-
ods in activation analyses has suggested a threshold of 0.001
(Woo et al., 2014). Methods which reduce the possibility of false
negatives and false positives when working with edges will be
highly valuable.

We circumvented these issues by focusing on edges that were
members of the significant NBS components in both datasets.
This required that a given edge survive thresholding (p < 0.01)
and be adjacent to enough other significant edges, in both data-
sets, effectively producing a final threshold more stringent than
p < 0.0001. Other research groups could replicate this approach
either by using open data which matches the task they are
studying or through a split-half approach within their dataset
(provided it is large enough). Alternatively, other clustering
methods may reduce false positives within a significant compo-
nent (e.g., the degree based statistic; Yoo et al., 2017).

We have shown that a simple modification to traditional fMRI
analyses, converting ROI activity into edge cofluctuation time
series, allowed us to extract novel and reliable information in
the form of high-frequency edge deflections. One of the major
benefits of this approach is its ability to produce windowless esti-
mates of network strength in order to identify rapid network
reconfigurations. In some ways, this is comparable to change
point detection (Xu and Lindquist, 2015) and latent state
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analyses, which identify a set of brain states based on ROI activa-
tion and covariance that can be assigned to each timepoint in an
fMRI time series. These analyses are in a sense windowless as
they can identify shifts between brain states that happen from
one moment to the next. Such analyses have identified large-scale
network changes tied to changes in attention (Cai et al., 2021;
Kondo et al., 2022; Yamashita et al., 2021; Song et al., 2022).
We believe this edge-based approach is complementary to latent
state analyses in two ways. First, it can easily be combined with
temporal regressors to extract information from edge cofluctua-
tions. In contrast, latent state models are typically entirely data
driven, and states must be linked to temporal events after the
fact. Second, the edge-based approach operates at a higher-
dimensional description than whole-brain state changes, which
describe coarse, low dimensional changes.

This edge-based approach enables a finer temporal granular-
ity than previous network neuroscientific fMRI analyses. As a
result, this method can be applied to any research which seeks
to apply the network neuroscience perspective to relatively fast-
changing cognitive phenomena. For example, how do networks
reconfigure to form “process-specific alliances” when engaging
different components of processes during learning (Cabeza and
Moscovitch, 2013)? How do networks reconfigure in response
to prediction errors during reinforcement learning paradigms?
Or, how do networks change in response to increasing working
memory loads, especially at supracapacity set sizes? We hope
that this work, along with the openly available code and data,
will allow researchers to identify rapid network reconfigurations
underlying a diverse set of cognitive processes.

This edge-based approach has offered an expanded perspec-
tive on relatively rapid network reconfigurations during atten-
tional fluctuations. While the default mode and attentional
networks were implicated in lapses and successful attentional
control as expected, so were subcortical and cerebellar regions,
which are linked to both associative and sensory-motor regions.
In addition, there is now the possibility to investigate attentional
fluctuations in terms of the relative integration or segregation of a
given network (such as the medial frontal network) with respect
to the rest of the brain. This expanded perspective can allow us to
identify both new connections and new graphical motifs under-
lying differences in attention across time.

Data Availability
The code for this analysis is available at github.com/henrymj/
edge_GLM. Dataset 2 can be accessed at https://nda.nih.gov/
edit_collection.html?id=2402. For inquiries about dataset 1, con-
tact the authors of the original manuscript https://doi.org/10.
1038/nn.4179.
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