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Abstract
Attention fluctuates between optimal and suboptimal states. However, whether these fluctuations affect how we learn visual 
regularities remains untested. Using web-based real-time triggering, we investigated the impact of sustained attentional state 
on statistical learning using online and offline measures of learning. In three experiments (N = 450), participants performed 
a continuous performance task (CPT) with shape stimuli. Unbeknownst to participants, we measured response times (RTs) 
preceding each trial in real time and inserted distinct shape triplets in the trial stream when RTs indicated that a participant 
was attentive or inattentive. We measured online statistical learning using changes in RTs to regular triplets relative to 
random triplets encountered in the same attentional states. We measured offline statistical learning with a target detection 
task in which participants responded to target shapes selected from the regular triplets and with tasks in which participants 
explicitly re-created the regular triplets or selected regular shapes from foils. Online learning evidence was greater in high 
vs. low attentional states when combining data from all three experiments, although this was not evident in any experiment 
alone. On the other hand, we saw no evidence of impacts of attention fluctuations on measures of statistical learning collected 
offline, after initial exposure in the CPT. These results suggest that attention fluctuations may impact statistical learning while 
regularities are being extracted online, but that these effects do not persist to subsequent tests of learning about regularities.
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Introduction

Regularities are prevalent in our everyday environment. We 
extract this potentially meaningful information over time via 
statistical learning. Statistical learning has been demonstrated 
in multiple sensory modalities including vision (e.g., Fiser 
& Aslin, 2002; Turk-Browne et al., 2005), audition (Conway 
& Christiansen, 2005; 2006), and language learning (Saffran 
et al., 1997), and has been observed across developmental 
stages (Krogh et al., 2013). As we navigate our environment, 
however, our attention also fluctuates between optimal and 
suboptimal states. Do these attentional state fluctuations 
impact the degree to which we are able to extract regularities?

Research has asked how another form of attention – selec-
tive feature-based and/or object-based attention – impacts 
statistical learning. Turk-Browne et al. (2005) tested this 
question by showing participants a sequence of shapes in 
two colors, where only one color was task-relevant. Partici-
pants were instructed to press a key whenever they observed 
an immediately subsequent repetition of a shape in that 
stream in relevant color. Results revealed that participants 
only learned regularities in the goal-relevant color stream, 
suggesting that goal-directed selective attention (i.e., atten-
tion to both color and shape) is required for visual statistical 
learning. Later work using a similar design, however, dem-
onstrated learning of regularities in both the goal-relevant 
and -irrelevant color streams, suggesting that selective atten-
tion may not be required to see offline evidence of statistical 
learning (Musz et al., 2015).

Importantly, attention is a multifaceted construct (Chun 
et al., 2011). Selection is only one of the fundamental 
aspects of attention. It is thus an oversimplification to 
assume that the downstream consequence of attention is 
all-or-none after selection. In fact, attentional state fluctu-
ates within individuals over time, impacting information 
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processing, and thus has behavioral consequences in 
a wide range of cognitive tasks (Esterman & Rothlein, 
2019; Esterman et al., 2013; Robertson et al., 1997; Sarter 
et al., 2001). Even after information is selected, task per-
formance could vary with fluctuations in attentional state. 
The impact of sustained attention on how we learn regu-
larities in an unsupervised manner via statistical learning 
is relatively unexamined in the literature.

How might sustained attention during initial exposure 
impact regularity-learning during acquisition and regular-
ity representations after the fact? Work has asked analogous 
questions about the relationship between attention fluctua-
tions and different forms of memory. DeBettencourt et al. 
(2019) demonstrated that attentional state fluctuations co-
vary with working memory performance as a whole-report 
memory task was ongoing. Attentional fluctuations during 
encoding also predicted subsequent memory for images 
when tested after the initial exposure, such that images 
encountered in high attentional states were better recognized 
(deBettencourt et al., 2018; Wakeland-Hart et al., 2022).

Analogously, we can evaluate the impact of attention 
fluctuations on statistical learning measured in two ways: 
online during initial exposure to regularities and offline after 
the initial exposure task is complete. Online measures, in 
which elements in a regular stimulus sequence are presented 
one after another in a cover task, primarily assess implicit 
knowledge. For example, in a serial response task in which 
participants repeatedly respond to a set of stimuli, learning 
is reflected in response time (RT) speeding (Hunt & Aslin, 
2001; Kiai & Melloni, 2021; Siegelman et al., 2018). In a 
click-detection task in which participants respond to a click 
superposed on a stream of trisyllabic words (Franco et al., 
2015; Gómez et al., 2011), learning is reflected in faster RTs 
to clicks presented at the boundary versus in the middle of 
these regular trisyllabic words. On the other hand, offline 
measures are used to assess both implicit and explicit knowl-
edge of regularity. The canonical offline test for implicit 
knowledge is the target detection task, which quantifies RT 
facilitation to targets in different positions within a previ-
ously presented regular sequence (Kim et al., 2009; Musz 
et al., 2015; Turk-Browne et al., 2005). RT facilitation, or 
faster responses to later items in the regular sequence, indi-
cates learning. A classic offline test assessing explicit knowl-
edge is the two-alternative forced-choice (2AFC) task where 
participants are asked to choose the correct regular sequence 
from foils (Fiser & Aslin, 2002; Saffran et al., 1997). Studies 
examining the relationship between online and offline meas-
ures of statistical learning have largely revealed no associa-
tion or only weak correlations between online and offline 
measures (Franco et al., 2015; Himberger et al., 2019; Kiai 
& Melloni, 2021; Siegelman et al., 2018).

Characterizing effects of sustained attention on both 
online and offline measures of statistical learning is 

important for two reasons. First, the lack of relationship 
between the two measures suggests that they involve dif-
ferent cognitive processes and capture different informa-
tion about learning (Kiai & Melloni, 2021). Tasks assess-
ing online learning may involve the extraction of stimulus 
properties and their regularities as well as the use of the 
extracted regularity. When tested offline, on the other hand, 
participants’ focus shifts to applying the extracted temporal 
statistics in recognition tasks (Fiser & Aslin, 2002). Sec-
ond, only examining statistical learning offline could miss 
insights about how information is accumulated in different 
attentional states. Examining both online and offline meas-
ures allows us to assess whether attentional fluctuations 
impact statistical learning when learning is happening on the 
fly, and ask whether any effects of attentional state persist 
until knowledge of regularities is tested later.

To bridge this gap between sustained attention and sta-
tistical learning, we asked how moment-to-moment changes 
in sustained attentional state affect the degree to which we 
learn visual regularities. At first glance, it seems impossible 
to test this question because although we learn regularities 
across repeated pattern exposures, we may be attentive at 
one exposure but inattentive at the next. To overcome this 
challenge, we designed a task in which visual regularities 
are presented contingent on attentional state, and aimed to 
observe the downstream consequences of sustained atten-
tional fluctuations on statistical learning.

In three web-based experiments (E1a, E1b, E1c), we sys-
tematically assessed the impact of attention fluctuations on 
online and offline measures of statistical learning. To do 
so, we combined a sustained attention task and a statisti-
cal learning task together within individuals. Participants 
performed a continuous performance task (CPT) with shape 
stimuli and were instructed to press a button in response 
to shapes from a frequent but not infrequent category. We 
measured correct-trial RTs in real-time, and inserted distinct 
shape triplets in the trial stream when RTs indicated that a 
participant was attentive (>1 standard deviation (SD) above 
the participant’s mean RT) or inattentive (>1 SD below the 
participant’s mean) (deBettencourt et al., 2018, 2019). In 
other words, participants saw one sequence of three shapes 
when they were attentive and another when they were inat-
tentive. We assessed online learning by comparing changes 
in RT within regular triplet relative to those within control 
triplets that were encountered in similar attentional states but 
in random order. To assess learning offline, we first asked 
participants to perform a target detection task in which they 
responded to target shapes selected from the regular triplets. 
We then used two direct measures to examine different 
aspects of participants’ knowledge. To measure knowledge 
about triplet group membership, we asked participants to 
select individual shapes that appeared in regular triplets 
among foils (E1b, E1c). To measure knowledge about the 
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order of shapes within triplets, we asked them to explicitly 
re-create the regular shapes in a drag and drop task (E1a, 
E1b, E1c). In a fourth experiment (E2), participants only 
performed the target detection task without undergoing the 
initial attention-contingent exposure.

Results revealed that more participants than that would 
be expected by chance showed explicit knowledge for tri-
plets learned in these experiments when asked to re-create 
the regular triplets. However, offline target detection results 
were mixed, and RT facilitation only differed between atten-
tional states in one of the three triggering experiments. In 
contrast, online statistical learning measured from changes 
in RTs relative to control showed a consistent trend of high 
attentional states inducing more online changes in RTs 
across experiments. Evidence of sustained attention’s impact 
on online statistical learning was found when we combined 
online learning data across our experiments (E1a, E1b, E1c). 
Thus, we find initial evidence for consequences of atten-
tional state fluctuations on an online measure of visual sta-
tistical learning.

Experiment 1a

Methods

We conducted a web-based experiment using Prolific (http://​
www.​proli​fic.​co) to ask whether statistical learning varies 
as a function of sustained attentional state. In a cover task 
measuring sustained attention, we embedded visual statisti-
cal regularities on the fly contingent on attentional state. We 
assessed the degree to which participants learned statistical 
regularities embedded in the trial stream during better ver-
sus worse attentional states. We predicted that participants 
would show more evidence of statistical learning for regu-
larities encountered in the better attentional state.

Participants

We ran a power analysis on pilot data (ηp
2 = 0.01, power 

= 0.8) using G*power (Faul et al., 2007), which suggested 
that 146 participants were needed to reach 80% power for an 
ANOVA interaction between triplet position and attentional 
state (Turk-Browne et al., 2005). We thus set our stopping 
rule as 150 usable participants after exclusion.

To meet our sample size obtained from the power analy-
sis, 201 participants were recruited using Prolific (sex: 112 
female, 89 male, 0 prefer not to say; mean age = 26.94 years, 
SD = 5.30, range = 18–35; current country of residence: 
USA; fluent language: English; normal vision; minimum 
approval rate > 0.98; minimum previous submissions ≥ 10). 
Thirty-eight participants were excluded due to a technical 
difficulty that resulted in missing data from the second part 

of the experiment, the target detection task. We defined a 
priori the minimum number of exposures to statistical regu-
larities, excluding participants who saw five or fewer regu-
lar triplets in either the better or the worse attentional state 
during the CPT because so few exposures may not result 
in statistical learning. Eleven participants were excluded 
because of five or fewer exposures to triplets in one of the 
two attentional states. We also decided a priori to exclude 
participants whose overall performance (A’) on part one of 
the experiment, the CPT, fell more than two standard devia-
tions from the group mean. Two participants were excluded 
based on this criterion (pre-exclusion group mean A’ = 0.86, 
SD = 0.15, lower bound = 0.56, upper bound = 1.16).

Final analyses were performed on the remaining 150 par-
ticipants (86 female, 64 male, mean age = 26.98 years, SD 
= 5.11, range = 18–35). The study was approved by the 
relevant University of Chicago Institutional Review Board, 
and participants gave informed consent online and were 
compensated for their participation.

Continuous performance task

Our experiment included three phases. In the first phase, 
participants performed a CPT (e.g., Robertson et al., 1997) 
for approximately 29 min to assess visual sustained atten-
tion. Before the task began, participants were shown exam-
ple shapes that they would see during the experiment, and 
were instructed to press the “spacebar” each time they saw 
a frequent-category shape (90% of non-triggered trials) but 
to withhold their response when they saw an infrequent-
category shape (“L” shapes; 10% of non-triggered trials; 
Fig. 1a). At the start of each trial, a black shape appeared on 
the screen for 800 ms followed by a 200-ms intertrial inter-
val (ITI). Responses were recorded while each stimulus was 
on the screen but not during the ITI.1 A central gray fixation 
dot was present on the screen during the trial and ITI, disap-
pearing when a participant made a response during stimulus 
presentation and reappearing at the start of each ITI. Stimuli 
were presented using jsPsych (de Leeuw, 2015).

Task stimuli matched those used in previous visual statisti-
cal learning studies (Fiser & Aslin, 2002; Turk-Browne et al., 
2005; Zhao et al., 2013). Twenty-six shapes were selected 
for all participants, and 12 were randomly assigned for each 
participant to serve as frequent-category shapes in the CPT. 
Six shapes were randomly divided into two groups of three 
shapes (i.e., two regular triplets). The remaining eight shapes 
served as rare control shapes (see the Real-time regularity 

1  Shape stimuli were presented for 800 ms, and mean RT for fre-
quent-category trials was 379.39 ms (SD = 121.28 ms). Thus, the 
lack of RT recording during the ITI (800–1,000 ms after stimulus 
onset) did not likely result in a large number of missed responses. 
Participants missed (i.e., failed to respond to) 2.96% frequent-cate-
gory trials on average.

http://www.prolific.co
http://www.prolific.co
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triggering section for detail). Four “L” shapes served as the 
infrequent-category shapes (Fig. 1a).

Real‑time regularity triggering

We characterized participants’ attentional states during the 
CPT using the speed of their RTs relative to an RT threshold 
(deBettencourt et  al., 2018, 2019). On each trial i, we 

calculated the running mean (μi) and standard deviation (σi) of 
correct frequent-trial RTs in real-time. We also calculated the 
mean RT of the three frequent trials preceding i (RT i) . When 
RT

i
 exceeded one standard deviation above the participant’s 

running mean (RT i > σi+μi) – that is, when participants were 
responding especially slowly, indicating a better attentional 
state (deBettencourt et al., 2018, 2019) – we inserted a triplet 
of a sequence of three regular shapes (e.g., ABC) into the trial 

Fig. 1   Task and stimuli. (a) Stimuli used in the tasks: The first four 
“L” shapes served as infrequent (10%) shape stimuli in the continuous 
performance task (CPT). The other shapes served as frequent-category 
stimuli. Of these, 12 as non-triggered frequent-category shapes, eight 
others were included in random control triplets, and six were included 
in regular triplets. Lighter green and purple underlines denote shapes 
included in random control triplets triggered by high and low attentional 
states, respectively. Darker green and purple underlines denote regular 
triggered triplets. The arrangement of all shapes other than the infre-
quent shapes was randomized for each participant. (b) Task illustration. 

Top panel: CPT and online measures of statistical learning. Participants 
saw different regular triplets contingent on their attentional state. Darker 
green and purple arrows indicate when pre-trial response time (RT) is 
slower or faster than one SD from the running mean, respectively. Ran-
dom control triplets are not shown in this plot due to limited space. Bot-
tom panel: Offline measures of statistical learning. Participants com-
pleted the offline tasks in the order of the target detection task (E1a–c), 
triplet re-creation task (E1a–c), and triplet selection task (E1b–c)
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stream. When RT
i
 fell more than one standard deviation below 

the participant’s running mean ( RT
i
 < μi-σi) – indicating fast 

responding and poor attention – we inserted a sequence of 
three different shapes (e.g., DEF) in the task (Fig. 1b). In other 
words, especially slow responding triggered the addition of 
one regular triplet and especially fast responding triggered the 
addition of another. No regular triplets were inserted in the 
first 80 trials to establish an RT range, in line with previous 
studies (deBettencourt et al., 2018, 2019). Shapes included in 
regular triplets were not presented during any other CPT trial. 
The set of frequent-category shapes that appeared in the regu-
lar triplets was randomized across participants.

We applied five constraints restricting when real-time 
triggering could occur. This allowed us to closely match the 
number of times a participant saw the two regular triplets 
despite the fact that they could have experienced more high 
than low attentional states or vice versa. Regular triplets 
could not be triggered within three trials following (1) an 
omission error (i.e., failure to press to a frequent-category 
shape); (2) an infrequent-category trial (an ‘L’ shape); or 
(3) another triggered regular triplet. In addition, (4) regular 
triplets could not be triggered if the previous three triggered 
regular sequences belonged to the same attentional state. 
This restriction helped ensure a roughly equal number of 
exposures to the better- and worse-attentional-state triplets 
and prevented participants from seeing four or more of the 
same sequence (e.g., ABC or DEF) in a row. Finally, (5) a 
regular triplet could not be triggered if doing so would cause 
the difference in the total number of triggered trials in the 
better versus worse attentional state to exceed three.

These five restrictions resulted in some instances where 
regular triplets could have been triggered by especially fast 
or slow RTs but were not. To disentangle the effect of shape 
novelty (because triplet shapes were seen less frequently 
than other frequent-category shapes) and statistical learn-
ing on RTs in the CPT, we inserted triplets of rare shapes in 
random order at these positions in the trial stream. It is pos-
sible that introducing new control shapes could potentially 
lead to differences in novelty (i.e., how rare the shapes are 
relative to the frequent CPT stimuli shapes) between shapes 
in triggered and control trials. We thus roughly matched both 
the number of triggered and control triplets and individual 
triggered and control shapes. We inserted a maximum of 24 
random triplets in the high and low attentional states, respec-
tively, to approximately match the mean number of regu-
lar and random triplets with the number of regular triplets. 
Eight additional shapes thus served as control triplet shapes 
(Fig. 1a). They were first randomly divided into two groups 
of four and then within each group arranged into 24 possible 
combinations of three shapes. One of the combinations was 
randomly interested into the CPT trial stream when a regular 
triplet could have been inserted due to a particularly high or 

low attentional state but was not because of one of the five 
restrictions. Thus, participants saw the random control tri-
plet shapes approximately as often as they saw regular triplet 
shapes and under similar attentional states.

The CPT served not only as a cover task during which 
participants were initially exposed to statistical regularities 
but also as a measure of sustained attention fluctuations. 
This allowed us to selectively present regularities during 
either better or worse attentional states.

In this design, a trial could either be triggered or non-
triggered. Non-triggered trials (1,200 per participant) 
served as markers of sustained attention and included both 
frequent-category trials (90% of all non-triggered trials) 
and infrequent-category trials (10% of all non-triggered tri-
als). Triggered trials included regular triplets (ABC, DEF) 
as well as random sequences of novel control shapes. The 
number of non-triggered trials was fixed for all participants, 
whereas the number of triggered trials varied depending on 
how often each participant fell into high and low attentional 
states. Thus, participants saw different numbers of total tri-
als during the CPT. The relative proportion of frequent- and 
infrequent-category shapes also varied across individu-
als because triggered shapes only came from the frequent 
category.

Target detection task

After participants completed the CPT, they performed 
a target detection task to assess their statistical learning 
(Turk-Browne et al., 2005). In this task, participants were 
instructed to respond to target shapes selected from the regu-
lar triplets embedded in the CPT (i.e., the initial exposure 
phase). The difference in RTs to the targets was then used 
as an offline measure of statistical learning. If participants 
learned the triplet sequence in the CPT, they should be able 
to make predictions about what shape is appearing next, and 
thus respond more quickly for later positions in the triplet.

On each trial, participants first saw a target shape along 
with text instructing them to press the “spacebar” as quickly 
as possible when they see the target shape appear on the 
screen. The page commenced after the participant pressed 
“enter.” Participants next saw a rapid serial presentation of 
12 shapes. Each shape was on the screen for 300 ms sepa-
rated by a 40-ms interstimulus interval. RT was calculated 
from the onset time of the target shape.

Shapes were drawn from the set of stimuli used during 
the CPT. Of the 12 shapes included in each target detection 
trial, nine were randomly drawn from the 12 frequent non-
triggered shapes from the CPT and three were from one of 
the two regular triplets presented during the CPT. Each of the 
six shapes from the two regular triplets served as a target four 
times. The three shapes from the regular triplet could not be 
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inserted in the first or the last three positions, resulting in six 
possible to-be-inserted positions for a shape and four for a 
triplet. Note that none of the control shapes were presented 
in this target detection task. As a result, there were 24 trials 
in the target detection task for each participant. We hypoth-
esized that the RTs for shapes in later positions in the triplet 
will be faster, showing evidence for learning the sequence. 
Importantly, we predicted that this speeding will be greater 
for triplets learned under high versus low attentional states. 
This result would suggest that visual statistical learning 
measured offline varies as a function of sustained attention.

Triplet re‑creation

In the last part of the study, we assessed participants’ knowl-
edge about the order of the shapes within the triplets. Par-
ticipants were presented with the three regular triplet shapes 
encountered in each attentional state during the CPT out-
side of a blank box. They saw the following instructions: 
“Some of the shapes you saw in the first part of the study 
in fact appeared in a regular order. Therefore, in this sec-
tion, we will ask you to create groups of three shapes that 
you remember from the first part of the experiment. Now, 
click on ‘Next’ to move on.” Participants then dragged the 
shapes into the box to indicate the order that they believed 
the shapes appeared. After this task, we asked participants 
about their awareness of the regularities (Online Supple-
mental Material (OSM) Table 1). Awareness data are not 
analyzed here.

Analysis approach

Assessing continuous performance task (CPT) performance

We assessed overall CPT performance using a non-paramet-
ric measure of sensitivity (A′), calculated as a combination 
of hit and false alarm rates (Smith, 1995). We next tested 
whether pre-trial RT was a valid index of attentional states 
in our online datasets. We predicted that faster RTs would 
precede incorrect compared with correct infrequent trials 
and assessed this prediction using a paired t-test.

Assessing statistical learning online

Participants were initially exposed to statistical regularities 
in the CPT. We thus asked if RT patterns indicative of sta-
tistical learning began to emerge during initial exposure. 
Specifically, we predicted that (1) participants would show 
greater RT differences from triplet position 1 to 3 for regular 
triplets versus random control triplets, and (2) that these dif-
ferences would be more evident in the high attentional state.

One potential challenge to this approach is that RTs 
tend to regress to the mean when they are especially fast or 
slow and triplets are triggered. That is, RTs usually do not 
get more extreme when already very fast or slow. To ask 
if regularity introduced changes in RT patterns above and 
beyond such regression to the mean, we took advantage of 
the “could-have-been-triggered” trials (random control tri-
plets) that share similar high or low attentional states with 
the actual triggered trials but have no regularity. We tested if 
the triggered trials (regular triplets) showed more RT change 
compared to “could-have-been-triggered” trials (random 
control triplets), and if this facilitation varied across atten-
tional states. This analysis was conducted using a mixed-
effects model and contrast analyses to test the difference in 
RT patterns across trial types in the continuous performance 
task. The model was specified as follows:

where we included position in the triplet (1, 2, or 3), atten-
tional state (high vs. low), and trial type (regular triplet vs. 
random control triplet) and their interactions as fixed effects, 
and participant as a random effect with random intercept and 
slope (see Results for model comparison). Trials with zero-
averaging in three trials preceding a control were excluded 
from this analysis. (This only occurred for random control 
triplets, which could have been triggered within three trials 
of a non-response. Non-responses were erroneously aver-
aged into the RTs as zeros when calculating the average of 
the three preceding trials. Non-responses were not averaged 
into the growing mean and SD RT as zeros.)

To examine the impact of attention on online statistical learn-
ing, we quantified an “online learning index” for each atten-
tional state. Previous work quantified online statistical learning 
using measures reflecting the extent to which RTs speed up 
progressively within triplets (Franco et al., 2015; Gómez et al., 
2011; Siegelman et al., 2018). However, since attention was 
not measured in these paradigms, patterns of within-triplet RTs 
across periods of attentional fluctuations were obscured. Here, 
since we are focusing on both tails (high and low) of partici-
pants’ attentional states, the within-triplet RTs tend to vary in 
ways that reflect regression to the mean: under high attentional 
state where RTs start slow, within-triplet RTs tend to get pro-
gressively faster, while the opposite is true for low attentional 
state. Therefore, we do not have a strong theoretical reason to 
assume that learning leads to speeding of RTs across triplet 
positions under both attentional states. Instead, a more rigorous 
way to operationalize learning is to compare the patterns of RTs 
to control triplets with random order.

Our online learning index was thus operationalized as 
any impact of regularity on the change in RTs (regardless of 
direction) across triplet positions compared to control trials 

CPT RT ∼ shape position ∗ attentional state ∗ trial type

+ (1 + shape position + attentional state + trial type | participant)
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where triplet order was random. To calculate this index, 
we extracted the estimated marginal means from the above 
model by applying a contrast that compares the magnitude 
of the change in RTs from position 1 to 3 across trial type 
(regular vs. random) and across attentional state (high vs. 
low). Statistical significance of this contrast was determined 
by evaluating the post hoc pairwise comparisons of esti-
mated marginal means with emmeans. All analyses were 
conducted using RStudio (R version 4.2.2) and functions 
in the lmerTest (version 3.1.3; Kuznetsova et al., 2017) and 
emmeans (version 1.8.2; Lenth et al., 2023) package.

Assessing statistical learning offline: Triplet re‑creation

To test whether participants successfully re-created regular 
triplets, we compared the total number of individuals who 
re-created each triplet to a null distribution reflecting the 
number of participants expected to report the correct tri-
plet order by chance. Specifically, we ran a non-parametric 
permutation test where, within each attention condition, we 
(1) randomly picked among the six possible shape arrange-
ments within a triplet as the correct answer; (2) calculated 
the average number of participants whose answers matched 
the random answer, and (3) ran 5,000 iterations of steps (1) 
and (2). This process resulted in a null distribution of 5,000 
participant counts per attention condition. Statistical signifi-
cance was then assessed using the following formula:

Assessing statistical learning offline: Target detection task

We then asked if participants learned the statistical regu-
larities overall. Replicating the approach applied in previ-
ous work (Musz et al., 2015; Turk-Browne et al., 2005), 
trials with RTs greater than three standard deviations 
above or below each participant’s individual mean were 
excluded from analysis. We predicted that there would 
be more facilitation in the triplet encountered in the high 
compared to the low attentional state, indicating better 
learning under the higher attentional state.

We ran a mixed-effects model to allow RT facilitations 
to vary in each individual to reveal systematic differences in 
RTs across the three triplet positions and to obtain interpret-
able numerical estimates of the amount of facilitation (Kiai 
& Melloni, 2021). The final model is specified as follows:

one-tailed p = (1 + (number of null participant counts >

= observed participant count))∕5001

target detection RT ∼ attentional state ∗ shape position

+ (1 + attentional state + shape position | participant)

where we included attentional state (high and low) and posi-
tion in the triplet (factor levels: 1, 2, 3) and their interaction as 
fixed effects and participant as a random effect with both ran-
dom intercept and slope (see Results for model comparison).

Previous work has pointed out a potential confound of 
shape position in the trial stream (Himberger et al., 2019), 
such that participants tend to detect target shapes presented 
later in the stream faster than those presented earlier. To 
address this point, we regressed out the variance explained 
by stream position using a mixed-effects model with stream 
position (factor levels: 4–9) as the fixed effect and a ran-
dom intercept for each participant. We conducted the same 
analyses described above on the residuals of this regression.

Results

Overall CPT performance

Mean CPT A’ across participants was 0.88 (SD = 0.06; 
chance = 0.5; Fig. 2a). We next tested whether pre-trial RT 
was a valid index of attentional states in our web-based sam-
ple. Replicating previous work (deBettencourt et al., 2018, 
2019), RTs averaged from three correct frequent trials pre-
ceding an error on an infrequent trial (‘L’ shape) were faster 
than that preceding a correct infrequent trial (t(149) = 23.78, 
two-tailed p < 0.001, Cohen’s d = 1.02, mean difference 
[correct – incorrect] = 47.03 ms, 95% CI = [43.12, 50.94]) 
(Fig. 2b; see OSM Fig. 4a for CPT RT distribution). In line 
with previous literature (deBettencourt et al., 2018, 2019; 
Robertson et al., 1997), these results confirmed that pre-trial 
RT was a valid index of attentional state, such that faster pre-
trial RTs correspond to a worse attentional state.

Real‑time triggering of regularity based on attentional 
state

On average, participants saw 17.85 regular triplets (SD = 
6.10, range = 6–36) under high attentional states and 18.10 
(SD = 6.00, range = 6–36) under low attentional states (see 
OSM Fig. 1a and OSM Fig. 4b for their position). The num-
ber of regular triplets encountered in the high versus the low 
attentional state did not systematically differ across partici-
pants (mean difference [high–low] = -0.25, mean absolute 
difference [condition with more–condition with fewer] = 
2.00, SD = 2.25, range = -3,3; t(298) = -0.35, p = 0.72, 
Cohen’s d = 0.04, 95% CI = [-1.62, 1.13]) (OSM Fig. 1c).

We inserted random control triplets at “could-have-been-
triggered” positions to investigate the impact of regularity 
on CPT RTs while controlling for shape novelty. On aver-
age, participants saw 17.83 random control triplets (SD = 
6.79, range = 2–24) under high attentional states and 23.80 
random control triplets (SD = 1.24, range = 13–24) under 
low attentional states (OSM Fig. 1b).



	 Attention, Perception, & Psychophysics

1 3

Online measure of statistical learning

In the CPT, we introduced regular triggered shape triplets 
and random control shape triplets when participants’ RTs 
were especially fast or slow to test if RTs to these two dif-
ferent trial types differ. Did participants show evidence of 
online statistical learning for regular triplets during this ini-
tial exposure phase?

A mixed-effects model using triplet position, attentional 
state, and trial type to predict CPT RT revealed a significant 
three-way interaction (χ2(2, N = 150) = 10.98, p < 0.01, 
Type II; Fig. 3a). To examine the impact of attention on 
online statistical learning, we quantified an “online learning 
index” for each attentional state. The online learning index 
was calculated by comparing how much RT changed across 
triplet positions in triggered relative to control trials. We 
then compared this index across attentional states. Online 
statistical learning was not significantly different across 
attentional states (estimated marginal mean for online learn-
ing index, high attention = 11.11 ms, estimated marginal 
mean for online learning index, low attention = 8.17 ms, 
estimated difference in online learning index = 2.95 ms, 
SE = 5.92, p = 0.62; Fig. 3e). Regularity impacted RTs 
relative to control within both attentional states. Under high 
attentional states, RTs to regularity were significantly faster 
than random shapes encountered in the same state (estimated 
marginal mean for online learning index, high attention = 
11.11 ms, SE = 4.28, p = 0.01). Under low attentional states, 
RTs to regularity were significantly slower than random 
shapes encountered in the same state (estimated marginal 
mean for online learning index, low attention = 8.17 ms, 
SE = 4.09, p = 0.04).

Offline measures of statistical learning: Triplet re‑creation

To assess whether participants' showed knowledge about the 
order of the triplet shapes, we asked them to re-create the 
triplets they remembered seeing in the CPT. In E1a, 34/148 
participants (22.97%) successfully recreated full triplets 
encountered in high attentional states (null mean = 24.60, 
one-tailed p < 0.05 (effect larger than 96.90% of 5,000 ran-
dom permutations)). Forty of 148 participants (27.03%) 
successfully recreated the triplet encountered in the low 
attentional state (null mean = 24.66, one-tailed p < 0.05 
(effect larger than 99.99% of 5,000 random permutations), 
OSM Fig. 2a, b). The number of participants who correctly 
re-created the triplet was not significantly different between 
the two attentional states (diff = -6.0, null diff = -0.13, two-
tailed p = 0.37, OSM Fig. 2c). In other words, more par-
ticipants than expected by chance showed explicit memory 
for regular triplets. At the group level, participants did not 
better remember regular triplets encountered in one of the 
attentional states. We next asked whether there is a differ-
ence in the number of shapes that participants positioned 
at the correct location within a triplet. A linear regression 
accounting for the number of times the regular triplet was 
encountered in the CPT revealed no difference in the number 
of shapes correctly positioned in the triplet re-creation task 
between attentional states (β = -0.10, p = 0.44, CI = [-0.36, 
0.16]). Of note, participants performed the triplet re-creation 
task after the target detection task in which they saw rapid 
presentation of each regular triplet 12 times (Fig. 1b, bot-
tom). This extra exposure, independent of attentional state, 
may have impacted the difference between high-attention 
and low-attention triplet re-creation in this task.

Fig. 2   Continuous performance task performance. (a) Distribution of overall A’ values. (b) Pre-trial response times (RTs) predicted accuracy on 
infrequent trials. Lines correspond to individual participants. Error bars correspond to the SEM
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Offline measures of statistical learning: Target detection 
task

We assessed whether participants learned the embedded 
regularities using data from the post-CPT target detection 
task. We found a main effect of shape position (χ2(2, N = 
150) = 17.90, p < 0.001, Type II Wald Chi-square test) but 
not attentional state, (χ2(2, N = 150) = 1.35, p = 0.25, Type 
II), on target detection RT (see OSM Fig. 5a for target detec-
tion RT distribution). Overall target detection RT did not 
differ as a function of the attentional state in which par-
ticipants originally encountered the target shape (Fig. 4a). 
1.74% trials were excluded based on the trial exclusion crite-
rion (> ±3*SD from each participant’s individual mean RT) 
described in the methods (Musz et al., 2015; Turk-Browne 
et al., 2005).

Participants learned regular triplets embedded in the CPT. 
Did sustained attention fluctuations impact how well they 
learned the regularities? To ask this question, we compared 
the degree to which RTs in the target detection task were 
facilitated in the triplets encountered in high and low atten-
tional states.

We compared two models with participants as the random 
effect: one with a random intercept for each participant, and 
the other with both a random intercept and slope for each 
participant. Model comparison was conducted using Akaike 
Information Criterion (AIC). The model including a random 
intercept and slope for each participant (AIC = 34435) per-
formed better than the model with only random intercept 
(AIC = 34588).

The mixed-effects model with target position and atten-
tional state as fixed effects and random intercepts and slopes 
for participant revealed a significant interaction between 
attentional state and shape position within-triplet (χ2(2, N = 
150) = 10.98, p < 0.01, Type II). This result shows more RT 
facilitation within-triplet (i.e., position 1, 2, and 3) for the 
triplet encountered in a higher attentional state, indicating 
better statistical learning (Fig. 4a).

It is possible that participants tended to respond faster 
towards the later part of the target detection stream (Him-
berger et  al., 2019). To address the influence of target 
position in the test stream, we regressed out the amount 
of variability explained by position in the trial stream and 
performed the mixed-effects model using residuals as the 

Fig. 3   Panels A–D: Response times (RTs) in the continuous perfor-
mance task in E1a, E1b, E1c, and data compiled from all three exper-
iments. RTs in the high attentional state are in upper panels. RTs 
under low attentional state are in lower panels. Error bars correspond 
to the SEM. Panels E–H: Online learning index measured in the con-

tinuous performance task in E1a, E1b, E1c, and data compiled from 
all three experiments. The y-axis represents the online learning index 
quantifying the impact of regular triplets vs. random triplets on RTs, 
where higher values indicate more impact of regularity on RTs
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predicted variable. The interaction between attentional state 
and shape position within-triplet remained significant (χ2(2, 
N = 150) = 12.07, p < 0.01, Type II), such that the amount 
of facilitation from early to later positions was larger under 
high than low attentional states (Fig. 4f). However, the main 
effect of triplet position was not significant (χ2(2, N = 150) 
= 0.32, p = 0.85, Type II).

Dividing participants into those who explicitly reported 
at least one (learners) or none (non-learners) of the regular 
triplets in the triplet re-creation task revealed no significant 
difference in target detection RT facilitation between the two 
groups (median chi-squared value: learners = 13.98, non-
learners = 4.57, 93.70% of chi-squared values for learners 
are more extreme than those for non-learners, one-tailed p 
= 0.06, Cohen’s d = 1.54; OSM Fig. 6a-c).

Individual differences in sustained attention and statistical 
learning

We predicted that individuals who performed more success-
fully on the CPT overall would also show more evidence of 
offline statistical learning, measured with accuracy in the 
triplet re-creation task and RT facilitation in the target detec-
tion task. Two participants were excluded from this analysis 
because data from the re-creation task were not recorded.

We ran a linear regression model to test the relationship 
between performance in the CPT and target detection task. We 
accounted for the fact that not every participant has the same 
number of trials in the CPT, which led to small differences in 
the ratio of infrequent to frequent trials (mean infrequent trial 
percentage = 8.38%, SD = 0.27%) and could in theory result 

in difference in task difficulty. Supporting our hypothesis, CPT 
A’ score was associated with the amount of target detection RT 
facilitation from position one to three across individuals (β = 
0.18, t(147) = 2.16, p = 0.03; Fig. 5). Thus, participants who 
paid more attention in the CPT also tended to have a greater 
amount of RT facilitation when their statistical learning was 
tested in the target detection task. There was also a non-sig-
nificant positive relationship between A’ and facilitation from 
position one to two (β = 0.05, t(147) = 0.62, p = 0.54) and two 
to three (β = 0.13, t(147) = 1.60, p = 0.11). These relationships 
were not significant when running the same linear regression 
model separating attentional states (within triplet position 1–3, 
1–2, 2–3: high attention β = 0.17, 0.14, 0.06, t(147)=1.92, 
1.74, 0.62, p = 0.06, 0.08, 0.54; low attention β = 0.13, 0.03, 
0.13, t(147) = 1.60, -0.38, 1.55, p = 0.11, 0.71, 0.12). No rela-
tionship was observed between CPT A’ and triplet re-creation 
performance (β = 0.14, t(145) = 1.67, p = 0.10; OSM Fig. 7a).

Fig. 4   Response times (RTs) in the target detection task. Green and 
purple bars show RTs for triplet encountered under high and low 
attentional state in the CPT, respectively. Panels A–E: RTs for tri-
plets in the target detection task in E1a, E1b, E1c and E2. Panels F-J: 

Residualized RTs for triplets in the target detection task after regress-
ing out the effect of shape position in the test stream in E1a, E1b, E1c 
and E2. Error bars correspond to the SEM

Fig. 5   Bootstrap permutation results. Distributions for 1,000 bootstrap 
samples of chi-squared values of the two-way interaction term (attentional 
state * shape position) in E1a, E1b, E1c and E2. Gray line represents the 
median of the bootstrapped distribution of chi-squared values in E2
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These results show that participants who were more atten-
tive during the initial exposure tended to have stronger evi-
dence for statistical learning as measured with RT facilita-
tion in the target detection task.

Experiment 1b

In E1a we found that, compared to random control triplets 
encountered under the same attentional states, RTs to regular 
triplets got significantly faster under high attentional states 
and slower under low attentional states. We observed evi-
dence for a difference in target detection task RT facilitation 
due to attentional fluctuations in E1a.

In E1b, we aimed to replicate the findings in E1a and test 
the impact of attentional states on a different measure of 
offline statistical learning. Previous work suggests that statis-
tical learning can be measured in different gradations. While 
we did not observe a difference in the offline re-creation 
task, using a more liberal measuring criteria for learning 
might reveal more information. We thus asked participants 
to select the regular triplet shapes they remembered seeing 
in the CPT from all frequent shapes.

Methods

Participants

To keep our sample size consistent with that of E1a (N = 
150), 186 participants were recruited using Prolific (sex: 93 
female, 93 male, 0 prefer not to say; mean age = 27.43 years, 
SD = 4.86, range = 19–35; all other criteria consistent with 
E1a). Twenty-one participants were excluded due to a tech-
nical difficulty that resulted in missing data from either the 
CPT or target detection task. Exclusion criteria were consist-
ent with E1a. Twelve participants were excluded because 
their overall CPT A’ fell more than two standard deviations 
from the group mean (pre-exclusion group mean A’ = 0.88, 
SD = 0.07, lower bound = 0.75, upper bound = 1.01). Three 
additional participants were excluded because they saw five 
or fewer regular triplets in one of the two attentional states.

Final analyses were performed on the remaining 150 par-
ticipants (69 female, 81 male, mean age = 27.52 years, SD 
= 4.82, range = 19–35). The study was approved by the 
relevant University of Chicago Institutional Review Board, 
and participants gave informed consent online and were 
compensated for their participation.

Continuous performance task and real‑time regularity 
triggering

All CPT procedures were consistent with those in E1a.

Target detection and triplet re‑creation tasks

All target detection and triplet re-creation task procedures 
were consistent with those in E1a.

Triplet selection

Statistical learning can be measured in different gradations. 
For example, participants may be able to identify the shapes 
in a regular triplet (i.e., group membership) despite being 
unable to order those regular shapes correctly (Forest, et al., 
2022). Thus, in E1b, we added a triplet selection task to 
assess participants’ knowledge about the group membership 
of shapes in the regular triplets. Participants answered two 
triplet-selection questions, one for the triplet learned under 
each attentional state. In each question, all frequent-category 
shapes (six shapes in the regular triplet, eight control shapes 
used to create the random triplets, and 12 shapes that were 
not involved in any triplet but served as the frequent shapes 
in the CPT) were presented on the screen. Participants were 
instructed to select the three shapes they remembered see-
ing in a regular order in the CPT and were required to make 
exactly three selections to be able to proceed. This selection 
thus assesses participants’ knowledge about single shapes they 
remembered being presented in a regular order, regardless of 
other higher level organizations (Forest et al., 2022; Liu et al., 
2023) like how these shapes were grouped (e.g., as a whole 
triplet encountered in high vs. low attentional state) or ordered 
within a group (e.g., the position and transition probability of 
shapes in a triplet under a given attentional state).

Analysis approach

Analyses of CPT performance, online measures of statistical 
learning, and target detection and re-creation task perfor-
mance were consistent with E1a.

To analyze triplet-selection performance we scored each 
of the two selection trials based on the number of regular 
triplet shapes selected. For each participant, we first assigned 
trial labels –one high- and one low-attention triplet – to the 
two selection trials in the way that would maximize their 
score. Score for each trial was then counted as the number 
of shapes that match with the trial label selected on that 
trial (see OSM Fig. 3. for a description of the full approach 
used to assign trial labels). To assess the significance of the 
scores, we calculated a chance score for each attentional 
state by simulating the experiment with 150 participants 
1,000 times where on each trial three shapes were picked 
randomly. The same set of scoring criteria were used as 
described above. We then calculated the average score for 
each attentional state. We compared the number of shapes 
participants correctly selected from each attentional state 
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to this chance value using a one sample t-test. To assess 
selection task performance across attentional states, we ran 
a linear regression model predicting the number of shapes 
correctly selected using attentional state while controlling 
for the number of triggered trials encountered in the CPT.

Results

Overall CPT performance

Mean A’ across participants was 0.90 (SD = 0.05; chance = 
0.5; Fig. 2a). Replicating E1a, RTs averaged from three cor-
rect frequent trials preceding an error on an infrequent trial 
(‘L’ shape) were faster than that preceding a correct infre-
quent trial (t(149) = 22.27, two-tailed p < 0.001, Cohen’s 
d = 1.14, mean difference [correct – incorrect] = 48.10 ms, 
95% CI = [43.83, 52.37]) (Fig. 2b; see OSM Fig. 4c for CPT 
RT distribution). These results confirmed that pre-trial RT 
was a valid index of attentional state in this sample.

Real‑time triggering of regularity based on attentional 
state

On average, participants saw 17.46 regular triplets (SD = 
5.59, range = 6–33) under high attentional states and 17.50 
(SD = 5.60, range=6–34) under low attentional states (see 
OSM Fig. 1d and OSM Fig. 4d for their position). The num-
ber of regular triplets encountered in the high vs. the low 
attentional state did not systematically differ across partici-
pants (mean difference [low – high] = 0.04, mean absolute 
difference [condition with more – condition with fewer] = 
1.80, SD = 2.12, range = -3–3; t(298) = -0.23, p = 0.82, 
Cohen’s d = 0.01, 95% CI = [-0.38, 0.30]) (OSM Fig. 1f). 
On average, participants saw 18.41 random control triplets 
(SD = 6.80, range = 1–24) under higher attentional states 
and 23.18 random control triplets (SD = 3.21, range = 0–24) 
under lower attentional states (OSM Fig. 1e).

Online measure of statistical learning

We hypothesized that regularity learning is more pro-
nounced under higher attentional states. A mixed-effects 
model consistent with E1a built using triplet position, atten-
tional state, and trial type to predict CPT RT revealed a 
significant three-way interaction (χ2(2, N = 150) = 7.63, p < 
0.05, Type II). We did not observe significant evidence for 
the impact of attention on online statistical learning quanti-
fied by online learning index (estimated marginal mean for 
online learning index, high attention = 12.93 ms, estimated 
marginal mean for online learning index, low attention = 
3.26 ms, estimated difference in online learning index = 
9.67 ms, SE = 5.89, p = 0.10; Fig. 3f), though the direc-
tion of this effect aligns with our hypothesis. Regularity 

impacted RTs relative to control only under high attentional 
states, where RTs to regularity got significantly faster over 
time compared to random shapes encountered in the same 
state (estimated marginal mean for online learning index, 
high attention = 12.93 ms, SE = 4.23, p < 0.01). Under low 
attentional states, RTs to regularity were not significantly 
different from random shapes encountered in the same state 
(estimated marginal mean for online learning index, low 
attention = 3.26 ms, SE = 4.10, p = 0.43).

Offline measures of statistical learning: Triplet selection 
and re‑creation

We examined two explicit measures of offline statistical 
learning. In the selection task, we asked participants to 
select the three regular shapes they remembered seeing 
from all non-infrequent shapes (non-“L” shapes) in the 
CPT. We examined whether participants selected more 
correct shapes from among all the shapes than expected 
by chance. Participants on average correctly selected 0.98 
high-attention state shapes (chance = 0.58, t(149) = 4.84, 
SD = 1.01, range = 0–3, p = 0.00, Cohen’s d = 0.40, 95% 
CI = [0.82, 1.14]) and 0.86 low-attention shapes (chance 
= 0.58, t(149) = 3.35, SD = 1.02, range = 0–3, p = 0.00, 
Cohen’s d = 0.28, 95% CI = [0.69, 1.03]). A linear regres-
sion accounting for the number of times the regular tri-
plet was encountered in the CPT revealed no difference 
in the number of correct shapes chosen in the selection 
task between attentional states (β = -0.11, p = 0.34, CI 
= [-0.35, 0.12], OSM Fig. 3a). These results mean that 
participants selected shapes in the regular triplets above 
chance in both attentional states, providing evidence that 
participants, on average, had knowledge about what shapes 
constitute the regular triplets, while the selection perfor-
mance did not differ significantly across attentional states.

E1b participants showed above-chance performance in 
the triplet re-creation task only for the high attention triplets, 
suggesting explicit knowledge of the regularities in some 
participants.

Forty-one of 150 participants (27.33%) successfully rec-
reated full triplets for the high attentional states (null mean 
= 24.87, one-tailed p < 0.01 [effect larger than 99.98% of 
5,000 random permutations]).

This number was 29/150 participants (19.33%) for tri-
plets in the low attentional state (null mean = 25.08, one-
tailed p = 0.22 (effect larger than 78.34% of 5,000 random 
permutations), OSM Fig. 2d, e). The number of participants 
who accurately reproduced the triplets did not significantly 
differ between the two attentional states (diff = 12, null diff 
= 0.01, two-tailed p = 0.08, OSM Fig. 2f). These results 
suggest that, at the group level, participants showed evi-
dence of explicit knowledge of the regularities for triplets 
learned under high attention state. There was no difference 
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in the number of shapes correctly positioned in the triplet 
re-creation task between attentional states after controlling 
for CPT exposures (β = 0.17, p = 0.18, CI = [-0.08, 0.41]).

Offline measures of statistical learning: Target detection 
task

Inconsistent with E1a, we did not observe an interaction 
between within-triplet position and attention state on the raw 
RT data (χ2(2, N = 150) = 0.27, p = 0.87, Type II; Fig. 4b; 
see OSM Fig. 5b for RT distribution) or the residualized RT 
(χ2(2, N = 150) = 0.39, p = 0.82, Type II; Fig. 4g). In other 
words, RT facilitation did not differ by attentional state.

Dividing participants into those who explicitly reported 
at least one (learners) or none (non-learners) of the regular 
triplets in the triplet re-creation task revealed no signifi-
cant difference in target detection RT facilitation between 
the two groups (median chi-squared value: learners = 3.10, 
non-learners = 4.10, 37.6% of chi-squared values for non-
learners are more extreme than those for learners, one-tailed 
p = 0.62, Cohen’s d = -0.23; OSM Fig. 6d–f).

Individual differences in sustained attention and statistical 
learning

A linear regression model testing the relationship between 
CPT A’ and RT facilitation in the target detection task 
revealed no relationship between A’ and the amount of tar-
get detection RT facilitation from position one to three, one 
to two, and two to three across individuals (all |β| ≤ 0.06, 
|t| ≤ 0.68, p ≥ .50). These relationships were not significant 
when running the same linear regression model separating 
attentional states (all |β| ≤ 0.10, |t| ≤ 0.121, p ≥ .23). No 
relationship was observed between CPT A’ and triplet re-
creation performance (β = -0.12, t(147) = -1.49, p = 0.14; 
OSM Fig. 7b).

Experiment 1c

In E1a and E1b, we demonstrated that pre-trial RT was a 
valid index of attentional state and successfully triggered 
regular and control triplets based on participants' attentional 
states in real time. We observed a consistent difference in 
online statistical learning measured from changes in regu-
lar triplet RTs relative to random triplet control under high 
attentional states. However, this effect was not different 
across attentional states. We also did not observe consistent 
effects of attentional state on offline measures of statistical 
learning. Given this, we sought to replicate E1b with one 
change to the triggering procedures to better match regular 
and random control triplets.

Methods

Participants

To keep our sample size consistent with that of previous 
experiments, 210 participants were recruited online using 
Prolific (sex: 104 female, 105 male, 0 prefer not to say, demo-
graphic information was missing from one participant due to 
a technical difficulty; mean age = 26.97 years, SD = 4.69, 
range = 18–35; all other criteria consistent with E1a and 
E1bs). Forty-six participants were excluded due to a technical 
difficulty that resulted in missing data from either the CPT or 
the target detection task. Exclusion criteria were consistent 
with E1a and E1b, six participants were excluded since their 
overall performance (A’) on part one of the experiment, the 
CPT, fell more than two standard deviations from the group 
mean (pre-exclusion group mean A’ = 0.88, SD = 0.07, lower 
bound = 0.75, upper bound = 1.02). Eight participants were 
further excluded because of fewer than or equal to five expo-
sures to triplets in one of the two attentional states.

Final analyses were performed on the remaining 150 
participants (77 female, 73 male, mean age = 27.03 years, 
SD = 4.59, range = 18–35). All participants gave informed 
consent online and were compensated for their participation.

Continuous performance task and real‑time regularity 
triggering

All CPT procedures were consistent with those in E1a and 
E1b, with one change. In E1a and E1b, control triplets could 
have been triggered within three trials of a non-response. 
Importantly, all control triplets preceded within three trials 
of a missing response were excluded from analysis. In E1c, 
control triplets (like regular triplets) could only be triggered 
after three consecutive responses. This change ensures that 
trailing RT mean calculation was consistent across regular 
trigger and random control trial types.

Offline measures of statistical learning

Target detection and triplet re-creation task procedures were 
consistent with those in E1a and E1b. Triplet selection task 
procedures were consistent with those in E1b.

Analysis approach

All analyses were consistent with E1a and E1b, except 
that there were no control triplets with a missing response 
one, two, or three trials before so no trial exclusion was 
performed.
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Results

Overall CPT performance

Mean A’ across participants was 0.89 (SD = 0.05; chance = 
0.5; Fig. 2a). Replicating E1a and E1b, RTs averaged from 
three correct frequent trials preceding an error on an infre-
quent trial (‘L’ shape) were faster than that preceding a cor-
rect infrequent trial (t(149) = 8.15, two-tailed p < 0.001, 
Cohen’s d = 0.34, mean difference [correct – incorrect] 
= 17.40ms, 95% CI = [13.18, 21.61]) (Fig. 2b; see OSM 
Fig. 4e for CPT RT distribution).

Real‑time triggering of regularity based on attentional 
state

On average, participants saw 17.15 regular triplets (SD = 
4.94, range = 6–34) under high attentional states and 17.56 
(SD = 4.95, range = 6–36) under low attentional states (see 
OSM Fig. 1g and OSM Fig. 4f for their position). The num-
ber of regular triplets encountered in the high vs. the low 
attentional state did not differ across participants (mean 
difference [low – high] = 0.41, mean absolute difference 
[condition with more – condition with fewer] = 1.85, SD = 
2.12, range = -3,3; t(298) = -0.72, p = 0.47, Cohen’s d = 
0.08, 95% CI = [-1.54, 0.71]) (OSM Fig. 1i). On average, 
participants saw 19.91 random control triplets (SD = 6.11, 
range = 2–24) under high attentional states and 23.05 ran-
dom control triplets (SD = 3.45, range = 5–24) under low 
attentional states (OSM Fig. 1h).

Online measure of statistical learning

A mixed-effects model using triplet position, attentional 
state, and trial type to predict CPT RT revealed a significant 
three-way interaction (χ2(2, N = 150) = 3.10, p = 0.21, Type 
II). Consistent with previous experiments, we calculated 
one online learning index for each attention state and tested 
the significance between them using the post hoc pairwise 
comparisons on estimated marginal means. The impact of 
attention on online statistical learning was not significant 
but was in line with the directions in E1a and E1b (esti-
mated marginal mean for online learning index, high atten-
tion = 10.132 ms, estimated marginal mean for online learn-
ing index, low attention = 0.483 ms, estimated difference 
in online learning index = 9.65 ms, SE = 6.11, p = 0.11; 
Fig. 3g). Regularity impacted RTs relative to control only 
under high attentional states. In high attentional states, RTs 
to regularity were significantly faster than random shapes 
encountered in the same state (estimated marginal mean for 
online learning index, high attention = 10.13 ms, SE = 4.44, 
p = 0.02). In low attentional states, RTs to regularity were 

not significantly different from random shapes encountered 
in the same state (estimated marginal mean for online learn-
ing index, low attention = 0.483 ms, SE = 4.20, p = 0.91).

Offline measures of statistical learning: Triplet selection 
and re‑creation

In the selection task, we asked participants to select the three 
regular shapes they remembered seeing from all non-infre-
quent shapes (non-“L” shapes) in the CPT. Participants on 
average correctly selected 0.74 high-attention state shapes 
(chance = 0.58, t(149) = 2.18, SD = 0.90, range = 0,3, 
p = 0.03, Cohen’s d = 0.18, 95% CI = [0.59, 0.89]) and 
0.93 low-attention shapes (chance = 0.58, t(149) = 4.47, 
SD = 0.95, range = 0,3, p = 0.00, Cohen’s d = 0.37, 95% 
CI = [0.77, 1.08]). A linear regression accounting for the 
number of times the regular triplet was encountered in the 
CPT revealed no difference in the number of correct shapes 
chosen in the selection task between attentional states (β 
= 0.20, p = 0.06, CI = [-0.01, 0.41], OSM Fig. 3b). These 
results mean that participants showed knowledge about what 
shapes were in the regular triplets under both attentional 
states, although this knowledge did not differ significantly 
across attentional states.

In the triplet re-creation task, 29/150 participants (19.33%) 
successfully recreated full triplets in the high attentional states 
(null mean = 24.92, one-tailed p = 0.21 [effect larger than 
78.62% of 5,000 random permutations], OSM Fig. 2g, h). 
This number was 33/150 participants (22.00%) for the triplets 
in low attentional states (null mean = 25.05, one-tailed p = 
0.05 [effect larger than 94.52% of 5,000 random permuta-
tions]). Accuracy between the two attentional states was not 
significantly different (diff = -4.0, null diff = 0.10, two-tailed 
p = 0.59, OSM Fig. 2i). In line with E1a and E1b, no dif-
ference in the number of shapes correctly positioned in the 
triplet re-creation task between attentional states was observed 
after controlling for CPT exposures (β = -0.05, p = 0.67, CI 
= [-0.30, 0.19]).

Offline measures of statistical learning: Target detection 
task

We did not observe an interaction between within-triplet posi-
tion and attention state on the raw RT data (χ2(2, N = 150) 
= 0.15, p = 0.93, Type II; Fig. 4c; see OSM Fig. 5c for RT 
distribution) or the residualized RT (χ2(2, N = 150) = 0.22, p 
= 0.90, Type II; Fig. 4h).

Dividing participants into those who explicitly reported 
at least one (learners) or none (non-learners) of the regular 
triplets in the triplet re-creation task revealed no significant 
difference in target detection RT facilitation between the 
two groups (median chi-squared value: learners = 2.02, non-
learners = 1.42, 64.70% of chi-squared values for learners are 
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more extreme than those for non-learners, one-tailed p = 0.35, 
Cohen’s d = 0.38; OSM Fig. 6g–i).

Individual differences in sustained attention and statistical 
learning

We did not observe a relationship between CPT A’ and target 
detection RT facilitation from across individuals (all |β| ≤ 0.06, 
|t| ≤ 0.71, p ≥ 0.48). Relationships were not significant when 
running the same linear regression model separating atten-
tional states (all |β| ≤ 0.13, |t| ≤ 1.65, p ≥ 0.10). No relationship 
was observed between CPT A’ and triplet re-creation perfor-
mance (β = -0.07, t(147) = -0.86, p = 0.39; OSM Fig. 7c).

Across‑experiment analyses

Since E1a, E1b and E1c followed a similar design, we com-
bined the data from all three experiments and assessed the 
evidence for a relationship between attentional state fluctua-
tion and statistical learning using all available data (N = 450). 
Analyses replicated those performed in E1a, E1b and E1c.

Online measure of statistical learning

We ran the following mixed effects model:

using triplet position, attentional state, and trial type to pre-
dict CPT RTs, while including experiment and participant 
as random effects. The model revealed a significant three-
way interaction (χ2(2, N = 450) = 20.05, p < 0.001, Type 
II). Consistent with previous experiments, we calculated 
one online learning index for each attention state and tested 
the significance between them using the post hoc pairwise 
comparisons on estimated marginal means. We observed 
evidence for the impact of sustained attention on online 
statistical learning, such that RT changes due to statistical 
regularity are more pronounced under high compared to low 
attentional states (estimated marginal mean for online learn-
ing index, high attention = 11.48 ms, low attention = 3.90 
ms, estimated difference in online learning index = 7.61 ms, 
SE = 3.45, p = 0.03; Fig. 3h). Regularity impacted RTs rela-
tive to control only under high attentional states, where RTs 
to regularity were significantly faster than random shapes 
encountered in the same state (estimated marginal mean for 
online learning index, high attention = 11.50 ms, SE = 2.49, 
p < 0.0001). Under low attentional states, RTs to regularity 
were not significantly different from random shapes encoun-
tered in the same state (estimated marginal mean for online 

CPT RT ∼ shape position * attentional state

* trial type + (1 + shape position

+ attentional state

+ trial type|experiment/participant)

learning index, low attention = 3.88 ms, SE = 2.38, p = 
0.10). This result suggests that sustained attention impacts 
statistical learning when learning is assessed when regular-
ity is unfolding.

Offline measure of statistical learning

We examined the interaction between within-triplet posi-
tion and attention state in data compiled from E1a, E1b, 
and E1c using a mixed effects model including experiment 
as an additional random effect. We did not observe a signifi-
cant interaction in target detection task RT facilitation when 
looking at raw RT (χ2(2, N = 450) = 3.50, p = 0.17, Type 
II; Fig. 4d) or residualized RT (χ2(2, N = 450) = 2.88, p = 
0.24, Type II; Fig. 4i).

Experiment 1 discussion

In a series of three experiments, we indexed sustained atten-
tional state in real time based on the average RT preceding 
each trial. We replicated previous findings that pre-trial RT 
is a valid index of sustained attentional state, such that par-
ticipants are more likely to make an error when pre-trial 
RTs are faster.

In E1a, we first confirmed that more participants than 
that would be expected by chance showed explicit knowl-
edge about the order of shapes in the regular triplets through 
the offline triplet re-creation task. Next, we observed mixed 
evidence for the impact of attentional fluctuations on online 
and offline measures of statistical learning. We did not see 
evidence for a difference in online learning across states. 
However, there was evidence that, under both high and low 
attentional states, RT changed due to regular triplets signifi-
cantly more than that due to random control triplets. While 
target detection task performance differed across attention 
states, explicit drag and drop task performance did not differ 
as a function of attentional state.

In E1b, we aimed to replicate the findings in E1a and 
examine a more liberal criteria for offline learning – knowl-
edge about group membership of shapes in regular triplets 
– by asking participants to select regular shapes among 
foils. At the group level, participants did show evidence of 
learning for the triplet shapes in each attentional state in 
the selection task and the high-attention triplet order in the 
re-creation task, although there were no differences across 
attentional states. We saw evidence for online learning in the 
high attention state but no difference across states. Interest-
ingly, inconsistent with E1a, we did not find evidence for 
the impact of attention in the offline target detection task.

In E1c, we implemented a slightly different triggering cri-
teria so that the regular and random triplets were embedded 
under more similar attentional states. At the group level, par-
ticipants showed evidence of learning for the triplet shapes 



	 Attention, Perception, & Psychophysics

1 3

in each attentional state in the selection task. In contrast to 
E1a and E1b, they did not show explicit knowledge of either 
triplet order in the re-creation task. We observed no signifi-
cant evidence for a difference in online index of learning 
across attentional states, although in line with E1a and E1b, 
we observed significant impact of regularity on RT under 
high attentional states. None of the offline measures revealed 
differences in learning across attentional states.

Combining E1a, E1b and E1c data, we observed evi-
dence for the impact of attentional state fluctuations on 
online measures of statistical learning, where the impact 
of regularity on RTs was significant under high attentional 
states and significantly greater in high versus low attentional 
states. There was no evidence for an impact of sustained 
attention on offline measures of learning. Overall, these 
results demonstrate the successful implementation of web-
based real-time triggering. They also suggest that attention 
may impact statistical learning while regularities are being 
extracted online. However, when knowledge about regularity 
is assessed in subsequent tests, performance may no longer 
depend on the initial attentional states during extraction.

Experiment 2

How much is the facilitation in the offline target detection 
task due to regularity learning? Himberger et al. (2019) 
raised the possibility that RT facilitation in offline target 
detection tasks may result from RT speeding to later shapes 
in the test stream rather than learning alone. Another inter-
esting question about the amount of exposure needed for 
learning is whether participants would learn statistical 
regularities from the target detection task on its own. To 
address these questions, in E2, we tested participants’ RTs 
facilitation even when they were not exposed to regulari-
ties in the CPT before being tested in the target detection 
task. We achieved this in a yoked control experiment where 
participants only performed a target detection task. In other 
words, participants in E2 saw the same stimuli in E1a offline 
target detection task but the regular triplets were no longer 
contingent on attention since there was no CPT. This control 
experiment allowed us to obtain a baseline measure of how 
RT changes within triplet position when no attentional states 
fluctuations were involved.

Methods

We predicted that there would not be an interaction between 
“pseudo” attentional state and shape position when regular-
ity presentation was no longer contingent on attention. We 
conducted a separate experiment in which participants did 
not perform the CPT and only completed a target detection 

task and a triplet re-creation task. Importantly, participants 
saw the exact same visual sequences and were instructed to 
respond to the exact same matched targets as those in E1a. 
In other words, E2 is the exact same with E1a except that 
here participants were not asked to perform a CPT. Using 
this design, we took the trial and stimuli sequences each 
participant saw in E1a and presented those sequences to a 
matching participant in E2 by collecting data from one par-
ticipant at a time.

Participants

To match our sample with that of E1a, 148 participants were 
recruited online using Prolific (sex: 77 female, 70 male, one 
prefer not to say; mean age = 28.20 years, SD = 4.84, range 
= 18–35; all criteria are the same as E1a and E1b) to match 
the number of participants with complete data from the E1a 
target detection and triplet re-creation tasks. We asked one 
attention check question (i.e., a multiple-choice question 
asking “What is the rule of the first part of the study?”) at the 
end of the study and decided a priori to exclude participants 
that answered this question incorrectly. No participants were 
excluded based on this criterion.

Target detection task

The target detection task followed the exact procedure 
described in E1a. Each participant in E2 saw the same visual 
stream and targets as one of the participants in E1a.

Triplet re‑creation

After the target detection task participants were asked to re-
create the two shape triplets following the exact procedure 
and stimuli from E1a.

Awareness question

We asked participants about their strategies to complete the 
target detection task and awareness of the regularities both 
after the target detection task and the triplet re-creation task 
(OSM Table 1).

Analysis approach

All analyses matched those in E1a except that there was no 
CPT.

We applied a non-parametric analysis to investigate 
whether attention-dependent regularity exposure in the 
CPT in E1a led to more target-detection RT facilitation 
across attentional states (two-way interaction between shape 
position and attentional state) compared to E2. Note that 
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attentional states in E2 were “pseudo” because they were 
neither measured nor manipulated but matched to the initial 
states participants learned the regular triplets in E1a. We 
then conducted non-parametric analyses. For each experi-
ment, we generated 1,000 bootstrap samples of size 148. 
We ran the same model specified in the target detection task 
section for each to obtain 1,000 chi-squared values of the 
two-way interaction term (attentional state * shape position). 
We then compared the two distributions of bootstrapped chi-
squared values to obtain an effect size (Cohen’s d) measure. 
Next, we assessed statistical significance by comparing the 
median of the bootstrapped distribution of E1 to the distri-
bution of E2. (The E2 distribution essentially serves as a 
“null” or “control” distribution of two-way interaction val-
ues reflecting differences in facilitation across attentional 
states when there is no initial exposure.)

Results

RT facilitation when exposure was not attention‑contingent

We observed a significant main effect of triplet position 
(χ2(2, N = 148) = 46.96, p < 0.001, Type II; Fig. 4e; see 
OSM Fig. 5d for RT distribution) but no significant inter-
action between triplet position and pseudo-attentional state 
(matched with E1a) on the raw RT (χ2(2, N = 150) = 3.64, 
p = 0.16, Type II; Fig. 4j). We then followed the same pro-
cedure in previous experiments to regress out the effect of 
stream position. The main effect of triplet position was not 
significant (χ2(2, N = 148) = 1.30, p = 0.52, Type II). The 
two-way interaction (shape position * pseudo attentional 
state) was not significant in E2 (χ2(2, N = 148) = 3.82, p = 
0.15, Type II). This result indicates that unlike E1a, here in 
E2 without initial exposure to regularities and when expo-
sure to regularities was not attention-contingent, the extent 
to which target detection RT was facilitated did not differ 
across regular shape triplets (Fig. 3c, d).

A non-parametric bootstrapping approach to formally 
assess the difference between the two experiments revealed 
a significant difference between the bootstrap distributions 
of the two experiments (median of E1a = 15.37, median of 
E2 = 4.83, 96.60% of chi-squared values in E1a are more 
extreme than those in E2, one-tailed p = 0.03, Cohen’s d = 
1.61), indicating that the extent to which RT facilitation dif-
fered across attentional states is different between the two 
experiments (Fig. 5).

We next asked to what extent the target detection task RT 
facilitation of E1b and E1c differed from E2. No significant 
difference in the bootstrap distributions was revealed when 

one-tailed p = (1 + bootstrapped chi-squared values in E2

≥ median of E1 bootstrap distribution)∕1001

comparing E1b and E2 (median of E1b = 1.49, median of 
E2 = 4.83, 20.7% of chi-squared values in E1b are more 
extreme than those in E2, one-tailed p = 0.79, Cohen’s d 
= -1.09), or E1c and E2 (median of E1c = 1.53, median of 
E2 = 4.83, 20.6% of chi-squared values in E1b are more 
extreme than those in E2, one-tailed p = 0.79, Cohen’s d 
= -1.10).

Offline statistical learning: Triplet re‑creation

E2 participants were presented with the exact same target 
detection sequences as participants in E1a but did not per-
form the CPT. Interestingly, E2 participants still showed 
above-chance performance in the triplet re-creation task for 
both types of triplets, suggesting explicit knowledge of the 
regularities in some participants. Thirty-eight of 148 par-
ticipants (25.68%) successfully recreated full triplets for the 
pseudo high attentional states (null mean = 24.58, one-tailed 
p < 0.01 [effect larger than 99.68% of 5,000 random per-
mutations]). This number was 37/148 participants (25.00%) 
for triplets in the pseudo low attentional states (null mean 
= 24.61, one-tailed p < 0.01 (effect larger than 99.32% of 
5,000 random permutations), OSM Fig. 2j, k). Accuracy 
between the two pseudo attentional states was not signifi-
cantly different (diff = 1.0, null diff = 0.10, two-tailed p = 
0.94, OSM Fig. 2l). These results suggest that, at the group 
level, participants showed evidence of explicit knowledge 
of the regularities even with 12 rapid regularity exposures.

Experiment 2 discussion

In E2, we showed participants the same target detection task 
stimulus sequence, which included the regular triplets, seen 
by participants in E1a. Interestingly, more participants than 
that would be expected by chance successfully re-created 
the regular triplet from these 12 exposures, demonstrating 
that there is regularity-learning during the target detection 
task itself. In addition, we observed speeding in RTs in the 
target detection task in raw RTs, while the extent to which 
the RTs were facilitated did not depend on attentional state.

General discussion

Attentional state fluctuates within an individual from moment 
to moment and impacts information processing. The informa-
tion we extract and retain from our environment is likely to 
be influenced by this fundamental, dynamic process as well. 
For example, in a stream of information, regularly repeating 
patterns across space and time contain helpful information. 
We thus process and extract this information through statisti-
cal learning. Here we explored the behavioral consequences 
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of attentional state fluctuations for our ability to pick up on 
visual temporal regularities.

In our series of experiments (E1a, E1b, E1c), we imple-
mented a web-based real-time triggering design where to-
be-learned statistical regularities were presented contingent 
on attentional states. We first used a behavioral index of 
attentional state to show that in the CPT, when participants 
were responding especially fast, they tended to make more 
errors and were thus likely in attentional lapses. We meas-
ured explicit knowledge of the regular triplets by asking 
participants to recreate the triplets in order (E1a–c and E2) 
and select regular triplet shapes from foils (E1b and 1c). Par-
ticipants successfully selected shapes in the regular triplets 
encountered under both attentional states in E1b and E1c. 
On the group level, more participants than that would be 
expected by chance re-created both regular triplets in order 
in E1a and E2 and the high-attention triplet in order in E1b.

Our results revealed mixed evidence for the impact of 
sustained attention on statistical learning. We observed a 
consistent difference in online statistical learning meas-
ured from changes in regular triplet RTs relative to random 
triplet control under high attentional states. However, this 
effect only significantly differed across attentional states 
when collapsing across experiments E1a–c (n = 450) and 
was not significant in any one experiment alone (n = 150). 
We observed no consistent evidence of statistical learning 
measured offline after initial familiarization through CPT. 
Thus, these results suggest that attention fluctuations may 
impact the extraction of regularities online, but that these 
effects do not persist when learning of regularities were 
tested subsequently.

The current study innovates on past work in three ways. 
First, we looked at the role of moment-to-moment fluctua-
tions in sustained attentional state on statistical learning. 
Second, unlike most previous work, we monitored atten-
tional state without manipulating it. Third, we collected 
RTs to regularities during initial exposure, which enabled 
us to measure learning both online and offline. These steps 
allowed us to observe the consequence of sustained attention 
fluctuations both during and after familiarization. We next 
discuss each of these points, address the implications of this 
work, and offer future directions for work bridging sustained 
attention fluctuations and statistical learning.

Examining the impact of sustained attention 
on statistical learning

To the first point, attention to stimuli was required to per-
form the CPT. However, participants could perform the task 
without overt awareness of the regularities themselves. Our 
results suggested that participants nonetheless showed evi-
dence of learning, replicating previous work using a cover 
task (Kiai & Melloni, 2021; Musz et al., 2015; Turk-Browne 

et al., 2005; Zhao et al., 2013; but see Himberger et al., 2019, 
for contradicting results). We further raised the hypothesis 
that the role of attention in statistical learning is not all or 
none. Rather, when in a more engaged attentional state, people 
might be more likely to register the regularities. Examining 
this hypothesis adds to a growing list of cognitive processes 
impacted by attention fluctuations, including inhibitory con-
trol (Robertson et al., 1997), working memory capacity (but 
not precision; deBettencourt et al., 2019; Hakim et al., 2020), 
and long-term memory (deBettencourt et al., 2018; Wakeland-
Hart et al., 2022).

Previous work demonstrated the role of attention in sta-
tistical learning, assessing distinct aspects of attention (e.g., 
attention as a selection mechanism, object-based attention). 
To effectively integrate the interaction between attention 
and statistical learning, it is crucial to clearly operationalize 
which aspect of attention is being examined (Frost et al., 
2019). Indeed, the impact of one’s intrinsic fluctuations of 
attentional state on learning was largely unexamined in pre-
vious literature. We argue here that state-like fluctuations in 
attention might also contribute to our ability and efficiency 
of extracting regularity from the environment.

Monitoring rather than manipulating sustained 
attention

We examined the role of sustained attention in statisti-
cal learning by monitoring attentional state rather than 
manipulating or biasing it directly. We instead manipulated 
what the participants saw and learned contingent on their 
attentional states. The stream of shapes that comprised the 
CPT trials, embedded regular triggered trials and random 
control trials were sampled from the same set of visual 
stimuli and thus came from a shared visual category (Fiser 
& Aslin, 2002; ; Musz et al., 2015; Turk-Browne et al., 
2005; Zhao et  al., 2013). This manipulation makes an 
interleaved cover task an uninterrupted serial response 
task, which feels subjectively more continuous from the 
participants’ view. This design then allowed us to assess 
whether sustained attention impacts statistical learning in 
a graded manner.

Measuring response times (RTs) during the learning 
phase

Online measures of statistical learning have gained less 
attention than offline measures. Yet online measures of 
extraction of regularities have been found to be largely 
uncorrelated with offline measures, revealing that the 
former process might reflect the extraction of regularity, 
while the latter might reflect the deployment of extracted 
information (Fiser & Aslin, 2002). In a typical statisti-
cal learning paradigm, the learning phase could involve 
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passive viewing without explicit tasks (Fiser & Aslin, 
2002), responding only to a selectively attended visual 
stream (Turk-Browne et al., 2005), or responding only to a 
target (Kiai & Melloni, 2021).

To assess online statistical learning during extraction, 
a serial reaction task is an ideal method, since repeated 
response to a set of stimuli, including the regular stimuli, is 
needed. Participants’ knowledge of the regularity can then 
be assessed by observing how RTs change within the regular 
sequence. To this end, a few studies have examined online 
statistical learning using tasks that require serial motor 
responses to a visual stream (Hunt & Aslin, 2001), a click-
detection task that compares RTs of clicks to a target that is 
presented at the boundary of versus within regular trisyllabic 
words (Gómez et al., 2011), and pressing a button to advance 
in a self-paced manner to familiarize with a visual stream 
(Siegelman et al., 2018). Similarly, in our studies, the use 
of a CPT enabled us to both observe trends in RTs during 
initial exposure and compare the trends when regularity is 
present versus not. Specifically, our cover task required a 
response for most trials and a response inhibition for rare 
(i.e., “L”-shaped) trials. Since RTs to regular triplet shapes 
were recorded, we could examine RTs as participants are 
gradually extracting regularities.

Examining the impact of attention on online 
versus offline measurements of statistical learning

Statistical learning tasks involve extracting and storing the 
regular information during the study phase and retriev-
ing it during the test phase. Two potential scenarios could 
explain why, when data were collapsed across experiments, 
attentional state during encoding affected online but not 
offline measures of statistical learning. First, sustained 
attention during the online study phase could have only 
weakly affected learning, such that the effect was apparent 
during the learning itself but did not persist to the offline 
test phase. Second, attentional state could have affected the 
rate of statistical learning but not the maximum strength of 
the learned representation. Participants could have learned 
the high-attention triplet sooner but learned both triplets 
equally well by the end of the task. In this case, regularities 
seen in both states would have reached the plateau by the 
end of the initial familiarization phase and online learning 
measures would differ but offline learning measures would 
be matched. Therefore, if online and offline assessments of 
learning tell us different information about how we learn 
statistical regularity, we need to empirically assess the 
impact of attention on statistical learning measured from 
these two phases separately. Here we raised the possibil-
ity that sustained attention might impact online extraction 
of regularity, a property that cannot be revealed with only 
offline measures.

Limitations

Our novel task design introduced a few methodological 
constraints. First, it is possible that our online measure of 
statistical learning was limited by the amount of variance 
in RTs and was thus not optimally sensitive to learning. To 
this point, future work could consider making the predictive-
ness of the shapes in the regular triplet more beneficial for 
task performance (e.g., adjusting the frequent-infrequent trial 
ratio, although there is a tradeoff between taxing attention 
and facilitating learning) to allow more room for responses 
to vary. Second, across three experiments we found that par-
ticipants on average were exposed to the two triggered triplets 
around 18 times. The small number of exposure trials and of 
the triplet group (i.e., one triplet for each attentional state) 
might constrain our power to detect online effects. In fact, 
we demonstrated a consistent trend in the effect of atten-
tion on online measures of learning and a significant effect 
when we compiled data across experiments. However, the 
small number of exposure trials were a result of the restric-
tion criteria crucial to our task that ruled out other factors 
potentially impacting learning above and beyond our variable 
interest-attentional state. Therefore, neural or physiological 
signatures of attention can be utilized to increase the possible 
number of triggered trials under each attentional state.

Second, we observed significant interaction between atten-
tional state and trial type in RT facilitation online only when 
compiled across the three experiments, an analysis that was 
not planned a priori. Recent discussion raised concerns about 
the validity of internal meta-analysis when each experiment 
bears the risk of generating false-positives and when experi-
menters selectively choose which internal experiments to ana-
lyze (Vosgerau et al., 2019). Although our experiments were 
not formally preregistered, the current analysis fits criteria for 
non-problematic internal meta-analysis in that we used rigor-
ous operationalization and rationale for the online learning 
analysis consistent across experiments and included all exper-
iments conducted (E1a-c) in the analysis without choosing.

Lastly, in our series of offline tasks, participants first 
completed the target detection task that indirectly measured 
learning and then the selection and triplet re-creation tasks 
that measured learning more directly. There could be poten-
tial interference between the direct and indirect measures in 
a within-subject design. Results from E2 suggest that learn-
ing may occur during the target detection task itself, which 
could bring learning of high and low attention triplets to the 
same level. Similar results were observed in Himberger et al. 
(2019) where participants performed two-alternative forced 
choice and triplet creation tasks with above-chance accuracy 
when there was no initial exposure to regularity before the 
target detection task. It is possible that additional learning 
during the target detection task bolstered learning and thus 
interfered with knowledge retained from online learning.
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Future directions

Our work motivates suggestions for research on attention 
fluctuations and statistical learning. First, research may 
benefit from including both online and offline measures 
of learning, which may reflect different information about 
participants’ knowledge of regularities. Second, to avoid 
the potential interference between indirect and direct meas-
ure of learning, between-subjects designs in which sepa-
rate groups of participants complete the indirect and direct 
offline tasks may be preferable. Finally, future work should 
prioritize indirect and/or direct offline assessment tasks that 
are less prone to attentional fluctuations during measurement 
to avoid obscuring potential effects of attentional state on 
learning during initial exposure.

Our results also motivate future work on attentional state 
and statistical learning using a wider range of measurements 
of both attention and learning. For example, an index of 
attentional state other than reaction time (e.g., pupillometry 
and functional brain networks predicting CPT performance 
using functional neuroimaging techniques; Rosenberg et al., 
2020) can be utilized to decrease the extent to which the tim-
ing of presented regularity is dependent on RTs, allowing for 
a more sensitive and statistically powered measure of online 
statistical learning. On the statistical learning side, the index 
of learning can be identified neurally using fMRI (Schapiro 
et al., 2012, 2013, 2014, 2017; Turk-Browne et al., 2009) 
and electroencephalography (EEG; Batterink & Paller, 2017; 
Tóth et al., 2017), which also has the benefit of quantifying 
learning when it happens online.

Future work could also explore the opposite causal direc-
tion: the role of statistical regularities on sustained attention. 
Studies have shown that regularities bias attention, such that 
attention could be captured by both a spatial location where 
temporal regularities occurred, and by features (i.e., color 
or dimension) of the regular stimuli (Wang & Theeuwes, 
2018; Zhao et al., 2013). These observations leave open the 
interesting question of whether regularities affect different 
aspects of attention, such as sustained attention, differently. 
The impact of attention on statistical learning is not unitary 
and future work would benefit from using and developing 
paradigms that monitor multiple facets of attention and their 
downstream impacts on statistical learning.

Conclusions

We introduced a new task for studying the impact of sus-
tained attention on statistical learning. Whereas in typical 
tasks participants may be more and less attentive when pre-
sented with regularities, we presented regularities contingent 
on attentional state measured in real-time. This allowed us 

to assess the ongoing and downstream effects of sustained 
attentional fluctuations on statistical learning. We saw 
greater evidence for online statistical learning in engaged 
attentional states when combining data across experiments, 
although the effect of attentional state at encoding did not 
affect offline measures of learning. Looking ahead, our 
web-based triggering task can be applied to characterize 
the consequences of attention fluctuations for other forms 
of learning as well.
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