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Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism.
There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings.
Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes
participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of
attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-
scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not
driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes
to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3–5, we
use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in
individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development
of predictive dimensional models of other clinically relevant phenotypes.

Key words: fingerprinting; functional connectivity; individual differences; machine learning; predictive modeling.

Introduction
Autism spectrum disorder (hereafter “autism”) affects approxi-
mately 1% of children in the world (Zeidan et al. 2022) and is
characterized by impairments in social communication and inter-
action as well as restricted and repetitive behaviors and atypical
responses to sensory information (American Psychiatric Associ-
ation 2013). An important symptom in autism with widespread
individual differences is difficulty with attention. Between ∼40%
and 80% (Gadow et al. 2006; Lee and Ousley 2006) of individuals
with autism have co-occurring attention symptoms, affecting
quality of life (Masi et al. 2017). In addition, other neurodiverse
individuals, like those with attention-deficit/hyperactivity dis-
order (ADHD) and/or the broader autism phenotype (Ingersoll
2010), also have difficulties with attention (Gerdts and Bernier
2011; American Psychiatric Association 2013). Given the impact,
there has been much recent work investigating the neurobiolog-
ical correlates of state- and trait-related attention in neurodi-
verse populations through the use of functional magnetic reso-
nance imaging (fMRI). Of particular interest have been functional

connectivity studies, in which measures of synchrony of the blood
oxygen level-dependent signal are calculated between different
regions of interest (Biswal et al. 1995). Group-based functional
connectivity studies—comparing those with a neurodiverse con-
dition like autism (Di Martino et al. 2013; Keehn et al. 2013;
Fitzgerald et al. 2015) or ADHD (Qiu et al. 2011; Di Martino et al.
2013; Posner et al. 2013; Hoekzema et al. 2014) to neurotypical
participants—have helped advance understanding of the brain
correlates of attention. In particular, the default mode network,
which plays a role in mediating aspects of attention, has been
noted to be consistently affected in those with autism and ADHD
(recently reviewed in Harikumar et al. 2021).

While collectively these studies have proven useful, they have
largely failed to make a clinical impact. Aside from issues asso-
ciated with participant head motion in this population (Yerys
et al. 2009) and smaller samples (Marek et al. 2022), another
potential reason is a lack of prediction-based studies focusing on
individuals. Studies using cross-dataset prediction—building and
validating models in one sample, then testing it in a separate
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sample (Scheinost et al. 2019)—are rare in the neuroimaging
literature, despite their potential clinical utility (Gabrieli et al.
2015). Besides clinical applications, a prediction-based approach
holds promise for avoiding statistical issues hindering generaliz-
ability (Yarkoni and Westfall 2017; Yarkoni 2020) and avoids the
general lack of reliability of simple association studies (Marek
et al. 2022) (though issues of validity can still occur with prediction
approaches, especially with confounds related to symptom sever-
ity). Finally, a prediction-based framework can offer insights into
populations undergoing significant developmental changes, par-
ticularly in youth (Rosenberg et al. 2018) and align with the goals
of interrogating symptom dimensions among diverse individuals
to aid further understanding of mental disorders (Insel et al. 2010).

Based on the importance of attention and the need for pre-
diction studies focusing on individual differences, we set out
to test if it is possible to build predictive models of sustained
attention phenotypes based on an in-scan attention task in a
sample of youth with autism and other neurodiverse conditions,
as well as neurotypical controls. There are numerous reasons it
might not be possible to generate a predictive model in a youth
sample comprising many patients, including difficulties with task
completion and issues with scan compliance (Yerys et al. 2009).
Difficulty obtaining high-quality data can also be an issue in
young participants (e.g. Horien et al. 2020).

In addition, there are potential issues related to building
brain–behavior models in neurodiverse populations. For example,
some have suggested that brain differences among those with
a neurodiverse condition compared to neurotypical participants
(Ross and Margolis 2019) might make it difficult to dimensionally
model a phenotype using measures of functional organization.
(Though it should be noted that neurodiversity exists on a
spectrum (Armstrong 2015), and the distinction between what
constitutes neurotypical vs. neurodiverse is somewhat artificial.)
Furthermore, cognitive processes like attention are supported by
complex, brain-wide correlates (Kessler et al. 2016; Rosenberg,
Finn, et al. 2016a). Such distributed network markers, despite
their complexity, are responsive to methylphenidate (Rosenberg,
Zhang, et al. 2016b), as well as other pharmacological agents
(Rosenberg et al. 2020; Chamberlain and Rosenberg 2022),
suggesting that if identified, a distributed network marker of
sustained attentional state might offer clinical utility.

With these factors in mind, we address 3 main issues in this
work. We aim to (i) determine if attention-based predictive models
can be generated in a sample of youth (some of whom have
neurodiverse conditions), (ii) test if such a model generalizes out
of sample, and (iii) interrogate neuroanatomy of the network
model and assess the stability in individual participants across
time. Using connectome-based predictive modeling (CPM) (Finn
et al. 2015; Rosenberg, Finn, et al. 2016a; Shen et al. 2017; Beaty
et al. 2018; Greene et al. 2018; Hsu et al. 2018; Yoo et al. 2018;
Rapuano et al. 2020; Rohr et al. 2020; Boyle et al. 2022), we show
that we are indeed able to predict performance on an in-scan
sustained attention task in novel subjects based on functional
connectivity data. The predictions are robust to factors such as
in-scanner head motion, Autism Diagnostic Observation Schedule
(ADOS) scores, age, sex, and intelligence quotient (IQ) scores.
Crucially, we find the network model generalizes out of sample,
increasing confidence in the model. In line with other dimensional
work in neurodiverse populations (Lake et al. 2019; Rohr et al.
2020; Xiao et al. 2021), we observe that the brain correlates
identified by the model are complex and distributed across broad
swaths of cortical, subcortical, and cerebellar regions. Using

connectome-based identification (ID) (Finn et al. 2015; Kaufmann
et al. 2017; Vanderwal et al. 2017; Waller et al. 2017; Amico and
Goni 2018; Graff, Tansey, Ip, et al. 2022a; Graff, Tansey, Rai, et al.
2022b), we perform exploratory analyses testing the longitudinal
stability of the network model in individual participants. In sum,
our data suggest that robust network markers of attentional state
can be generated in youth and add to the growing literature
suggesting the power of dimensional approaches in modeling
brain–behavior relationships.

Materials and methods
Description of datasets
We used 5 independent datasets (Table 1) in this study. The first
dataset consisted of youths with autism and other neurodiverse
conditions (e.g. ADHD, anxiety, broader autism phenotype, bipolar
disorder) as well as typically developing children and has been
described previously (hereafter “neurodiverse sample”) (Horien
et al. 2020). Participants were scanned on a 3T Siemens Prisma
System. See Supplementary Material for exclusion criteria and
imaging parameters for the neurodiverse sample. A second
dataset of neurotypical adults was used as a test dataset
(hereafter “validation sample”) and is described elsewhere
(Rosenberg, Finn, et al. 2016a). Participants were scanned on a
3T Siemens Trio TIM system.

Three additional datasets from the Consortium for Reliability
and Reproducibility (CoRR) (Zuo et al. 2014) were used to assess
stability of the network model: the University of Pittsburgh School
of Medicine dataset, the University of Utah dataset, and the
University of McGill dataset (hereafter, “Pitt,” “Utah,” and “UM,”
respectively). Full details of the Pitt and UM datasets can be found
elsewhere (Hwang et al. 2013; Orban et al. 2015). All scans were
acquired using Siemens 3-T Tim Trio scanners; all participants
were neurotypical.

All datasets were collected in accordance with the institutional
review board or research ethics committee at each site. Where
appropriate, informed consent was obtained from the parents
or guardians of participants. Written assent was obtained from
children aged 13–17 years; verbal assent was obtained from par-
ticipants under the age of 13 years.

Gradual onset continuous performance task
description
Participants in the neurodiverse sample completed the gradual
onset continuous performance task (gradCPT) (Esterman et al.
2013; Rosenberg et al. 2013; Rosenberg, Finn, et al. 2016a). The
gradCPT is an assessment of sustained attention and inhibition
abilities that has been shown to produce a range of performance
scores across neurotypical participants (Esterman et al. 2013;
Rosenberg et al. 2013). In the task, participants viewed grayscale
pictures of cities and mountains presented at the center of the
screen. Images gradually transitioned from one to the next every
1,000 ms. Subjects were told to respond by pressing a button for
city scenes and to withhold button presses for mountain scenes.
City scenes occurred randomly 90% of the time. As in previous
studies (Esterman et al. 2013; Rosenberg, Finn, et al. 2016a), accu-
racy was emphasized without reference to speed, and perfor-
mance was quantified using d’ (sensitivity), the participant’s hit
rate minus false alarm rate. Participant d’ scores were calculated
for scan 1 and scan 2 individually, as well as the average across
both scans. Participants in the validation sample also completed
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Table 1. Demographic and imaging characteristics of samples used in this study.

Measure Neurodiverse sample Utah UM Pitt Validation sample

Number of participants (males) 70 (39) 16 (16) 27 (4) 44 (21) 25 (12)
Number of participants with a
neurodevelopmental or
psychiatric condition

33 total
7 = ADHD
2 = anxiety disorder
20 = autism
3 = BAP
1 = bipolar

- - - -

Age in years, mean (standard
deviation)

11.59 (2.87) 22.81 (7.59) 64.7 (7.3) 16.42 (2.55) 22.79 (3.54)

Time between scans in years,
mean (standard deviation)

- 2.56 (0.28) 0.30 (0.061) 1.69 (0.28) -

Scan duration in minutes
(volumes)

10 min (two 5-min runs;
600 total volumes)

8 min (240) 5 min (150) 5 min (200) 36-min task (three 12-min runs;
824 total volumes); 6-min rest
(360 total volumes)

TR in seconds 1 2 2 1.5 1
IQ, mean (standard deviation) 107.23 (15.93) - - - -

ADHD, attention-deficit/hyperactivity disorder; BAP, broader autism phenotype; ADOS, Autism Diagnostic Observations Schedule; IQ, intelligence quotient, TR,
repetition time.

gradCPT with the same parameters as above, except scene tran-
sitions took 800 ms; resting-state data were also collected in this
sample.

The Pitt, Utah, and UM subjects completed only resting-state
scans that were spaced apart at longer time intervals (months to
years between scans; Table 1).

Preprocessing
The preprocessing strategy for the neurodiverse sample has been
described previously (Greene et al. 2018; Horien et al. 2019). Pre-
processing steps were performed using BioImage Suite (Joshi et al.
2011) unless otherwise indicated, and included: skull stripping
the 3D magnetization prepared rapid gradient echo images using
optiBET (Lutkenhoff et al. 2014) and performing linear and non-
linear transformations to warp a 268-node functional atlas from
Montreal Neurological Institute space to single subject space
(Greene et al. 2018). Functional images were motion-corrected
using SPM8 (https://www.fil.ion.ucl.ac.uk/spm/software/spm8/).
Covariates of no interest were regressed from the data, including
linear, quadratic, and cubic drift, a 24-parameter model of motion
(Satterthwaite et al. 2013), mean cerebrospinal fluid signal, mean
white matter signal, and the global signal. Data were temporally
smoothed with a zero-mean unit-variance low-pass Gaussian
filter (approximate cutoff frequency of 0.12 Hz). The results of
skull-stripping, non-linear, and linear registrations were inspected
visually after each step.

We used previously preprocessed data for the Utah, UM, Pitt,
and validation samples; the preprocessing approach has been
described elsewhere (Horien et al. 2019; Rosenberg, Finn, et al.
2016a). (See below for more about how motion was controlled in
all analyses in all samples.)

Node and network definition
We used a 268-node functional atlas (Finn et al. 2015). For each
participant, the mean time-course of each region of interest
(“node” in graph theoretic terminology) was calculated, and the
Pearson correlation coefficient was calculated between each pair
of nodes to achieve a symmetric 268 × 268 matrix of correlation
values representing “edges” (connections between nodes) in graph
theoretic terminology. We transformed the Pearson correlation
coefficients to z-scores via a Fisher transformation and only

considered the upper triangle of the matrix, yielding 35,778
unique edges for whole-brain CPM analyses. For certain analyses,
we grouped the 268 nodes into the 10 functional networks
described by Horien et al. (2019).

Connectome-based predictive modeling
To predict gradCPT performance (d’) from the brain data (con-
nectivity matrices) in the neurodiverse sample, we used CPM
(Shen et al. 2017) (Fig. 1). Briefly, using 10-fold cross-validation,
connectivity matrices from gradCPT and d’ scores were divided
into an independent training set including subjects from 9 folds
and a testing set including the left-out fold (Box 1). In the training
set, linear regression was used to relate edge strength to d’ (Box 2).
The edges most strongly related to d’ were selected (using a
feature selection threshold of P = 0.05; Box 3) for both a “positive-
association network” (in which increased connectivity was associ-
ated with a higher d’ score) and a “negative-association network”
(in which decreased connectivity was associated with a higher
d’ score). Mean network strength (Box 4) was calculated in both
the positive-association and negative-association networks, and
the difference between these network strengths was calculated
(“combined network strength”), as in previous work (Greene et al.
2018):

Positive − association network strengths

= 1
b

⎛
⎝∑

i,j

ci,jm
+

i,j

⎞
⎠ ; b = i

(
j − 1

)

2

Negative − association network strengths

= 1
b

⎛
⎝∑

i,j

ci,jm
−

i,j

⎞
⎠ ; b = i

(
j − 1

)
2

Combined network strengths

= Positive − association network strengths–negative

− association network strengths
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Fig. 1. A schematic of CPM. Figure adapted with permission from Shen et al. (2017).

where c is the connectivity matrix for subject s and m+ and m−

are binary matrices indexing the edges
(
i, j

)
that survived the fea-

ture selection threshold for the positive-association and negative-
association networks, respectively. (Recall that c and m+ and
m− comprise only the upper triangle of the connectivity matrix,
as specified above.) Throughout the text, we refer to the edges
in the positive-association and negative-association network as
comprising the “attention network.” We call attention to the fact
that for both the positive- and negative-association networks,
mean network strength was calculated, as opposed to summed
network strength (Shen et al. 2017).

A linear model was then generated relating combined network
strength to d’ scores in the training data (Box 5). In the final
step, combined network strength was calculated for the left-out
participants in the testing set, and the model was applied to
generate d’ predictions for these left-out subjects (Box 6). We
conducted the main CPM analyses by constructing an average
connectivity matrix per participant across the 2 gradCPT runs;
behavioral data were averaged as well, as in previous work using
gradCPT (Rosenberg, Finn, et al. 2016a). (See “Multiverse analysis
and CPM” section below for how the effects of arbitrary choices
were assessed.)

As in Scheinost et al. (2021), model performance
was assessed by comparing the similarity between predicted and
observed gradCPT d’ scores using both Spearman’s correlation
(to avoid distribution assumptions) and root mean square
error (defined as: RMSE

(
predicted, observed

) = √(
1/n

∑n
{i=1}(

actuali − predictedi

)2)). We performed 1,000 iterations of a given
CPM analysis and selected the median-performing model; we

report this in the main text when discussing model performance.
To calculate significance, we randomly shuffled participant labels
and attempted to predict gradCPT d’ scores. We repeated this 1,000
times and calculated the number of times a permuted predictive
accuracy was greater than the median of the unpermuted
predictions to achieve a nonparametric P-value:

P = (
#

{
rhonull > rhomedian

})
/1, 000

where #{rhonull > rhomedian} indicates the number of permuted
predictions numerically greater than or equal to the median of
the unpermuted predictions (Scheinost et al. 2021). Note that all
P-values reported for CPM performance are from this permu-
tation testing procedure. We also report the variance explained
(R-squared) between predicted and observed d’ scores.

In addition, we performed CPM using only the edges in conven-
tionally defined resting-state networks, as well as after perform-
ing a “lesion” analysis, in which we removed all edges within and
between a given resting-state network. Prediction performance
was quantified as above. Results of each model were also com-
pared to the “main” whole brain-based CPM model reported in
Fig. 2A (obtained with the P < 0.05 feature selection threshold)
using Steiger’s z test (Steiger 1980).

Multiverse analysis and CPM
To determine if CPM findings were robust, we used a multiverse
approach to explore how results were affected by different ana-
lytical choices (Steegen et al. 2016). The goal of this approach
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Fig. 2. In-scan sustained attention task performance (gradCPT d’) can be predicted in a sample of neurodiverse youth using CPM. A) Results from the
combined network model. B) Results from the positive-association network. C) Results from the negative-association network. For all plots, results
are shown for a feature selection threshold of 0.05. Actual gradCPT d’ scores are indicated on the x-axis; predicted scores, on the y-axis. Higher d’
scores indicate better performance on the task and imply better sustained attention. A regression line and 95% confidence interval are shown. ADHD,
attention-deficit/hyperactivity disorder; BAP, broader autism phenotype; P = P-value; RMSE, root mean square error.

is not to determine what CPM pipeline gives the “best” predic-
tion; rather, it is to gather converging evidence across a range of
analytical scenarios to determine how modeling choices affect
results. Specifically, we altered the feature selection threshold
used to select significant edges (P = 0.1, P = 0.05, P = 0.01, P = 0.005,
P = 0.001); we tested CPM using a combined network model ver-
sus testing the positive-association and negative-association net-
works separately; we tested the effect of controlling for partici-
pant age, sex, IQ, ADOS (Lord et al. 2012) calibrated severity score,
and head motion as described previously, by using partial corre-
lation at the feature selection step (Scheinost et al. 2021; Dufford
et al. 2022); and we also built models using data from gradCPT
run 1, gradCPT run 2, and average gradCPT data. To ensure this
approach did not result in false positives, the Benjamini–Hochberg
procedure (Benjamini and Hochberg 1995) was applied to control
for multiple comparisons (correcting for 13 CPM tests). In addi-
tion, we tested if it was possible to successfully predict d’ using
only the neurodiverse individuals; we used leave-one-out cross-
validation instead of 10-fold (due to the smaller sample size) to
generate CPM models and quantified prediction performance as
above.

Testing generalizability of the attention network
To assess if the network model of attention generalized out of
sample, we defined a consensus positive-association network and
consensus negative-association network as edges that appear in
at least 6/10 folds in 600/1,000 iterations of CPM. This resulted in
922 edges in the positive-association network and 896 edges in the
negative-association network (we note the size of these networks
is consistent with other CPM networks that have generalized (e.g.
Rosenberg, Finn, et al. 2016a; Rosenberg, Zhang, et al. 2016b;
Yip et al. 2019). Using the combined network strength in the
consensus networks (as above for CPM), we determined model
coefficients across the neurodiverse sample, as in Rosenberg,
Finn, et al. (2016a), Ju et al. (2020), and Dufford et al. (2022). We
then applied the network masks and model coefficients to the
validation sample to generate d’ predictions.

As above for CPM analyses, model performance was assessed
by comparing the similarity between predicted and observed
gradCPT d’ scores using both Spearman’s correlation and by
calculating RMSE. Nonparametric P-values were computed as for
CPM. As above, we used a similar multiverse approach to ensure
results were not driven by subject age, sex, or head motion; the
Benjamini–Hochberg procedure (Benjamini and Hochberg 1995)
was again used to control for multiple comparisons. To further

ensure results were robust, we tested a range of summary net-
works of varying sizes (i.e. from stringent cases where an edge
must appear in 10/10 folds and 1,000/1,000 iterations, to more
liberal thresholds where an edge must appear in 3/10 folds and
300/1,000 iterations, moving in intervals of 1 fold and 100 iter-
ations for each summary network). Testing various summary
networks is crucial, given the arbitrary nature of summarizing a
network model and the researcher degrees of freedom (Wicherts
et al. 2016) involved in such a task.

Connectome-based ID
To test the stability of the predictive model over time in a
given individual, we used connectome-based ID (Finn et al.
2015) and the Pitt, Utah, and UM samples. (See Supplemental
Fig. 1 for a schematic of connectome-based ID.) Briefly, after
selecting only the edges in the positive-association and negative-
association networks (i.e. the same consensus edges used in
the cross-dataset test—the 922 and 896 edges in the positive-
association and negative-association networks, respectively), a
database was created consisting of all subjects’ matrices from
scan 1. In an iterative process, a connectivity matrix from a given
subject was then selected from scan 2 and denoted as the target.
Pearson correlation coefficients were calculated between the
target connectivity matrix and all the matrices in the database.
If the highest Pearson correlation coefficient was between the
target subject in one session and the same subject in the second
session (i.e. within-subject correlation > all other between-subject
correlations), this was recorded as a correct identification. The
process was repeated until identifications had been performed
for all subjects and database–target combinations. We averaged
both database–target pairs (because these can be reversed) for
a dataset to achieve an average ID rate. To calculate P-values,
we randomly shuffled subject identities and reperformed ID for
1,000 iterations and compared the actual ID rates to this null
distribution (Finn et al. 2015; Horien et al. 2018, 2019):

P = (# {IDnull > IDactual}) /1, 000
)

where #{IDnull > IDactual} indicates the number of permuted ID
rates numerically greater than or equal to the actual ID rate
obtained using the original data.

We also assessed if connections inside the attention network
were more or less stable than connections in the rest of the
brain. We generated 1,000 summary networks comprising edges
outside of the consensus attention network (and the same size
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Table 2. Quantifying the number of participants in the neurodiverse sample with mean FFD values below motion thresholds.

Motion threshold (mean FFD, mm) Number of participants below threshold Percentage of participants below threshold

0.24 70 100%
0.20 67 95.7%
0.15 59 84.3%
0.10 43 61.4%

as the positive-association and negative-association networks).
Connectome-based ID was performed using the random net-
works, and we compared ID results to those obtained using the
original consensus attention network. P-values were obtained as
follows:

P = (# {IDrandom > IDactual}) /1, 000
)

where #{IDrandom > IDactual} indicates the number of random ID
rates numerically greater than or equal to the actual ID rate
obtained using the original data.

In the Pitt dataset, incomplete scan coverage during the func-
tional runs resulted in 158/922 and 145/896 edges missing in the
positive-association and negative-association networks, respec-
tively; we performed ID with the remaining edges.

Motion control considerations
In-scanner head motion has been shown to affect estimates of
functional connectivity (Satterthwaite et al. 2013; Power et al.
2015) and brain–behavior relationships (Siegel et al. 2017). We
therefore adopted a rigorous motion control strategy during scan-
ning acquisition and in all analyses.

Specifically, all participants underwent an intensive mock scan
protocol 5 days prior to scanning (along with a refresher training
period on the day of the scan). We have previously shown in this
same sample that the mock scan protocol significantly lowers
motion artifact (Horien et al. 2020). In the present paper, such
an approach led to 100% of the sample having a mean frame-to-
frame displacement (FFD) < 0.24 mm (Table 2), well below other
samples of youth (e.g. Casey et al. 2018). Further, 95.7% of the
sample (67/70 of the final participants used in analyses) contained
data with a mean FFD < 0.2 mm, a typical threshold used for
determining high- versus low-motion data in youth and/or those
with a mental health condition (Yip et al. 2019; Ju et al. 2020;
Lichenstein et al. 2021). (See Supplemental Fig. 2 for a histogram
of mean FFD values in the neurodiverse sample.)

As in other work using the gradCPT (Rosenberg, Finn, et al.
2016a; Rosenberg et al. 2020), no censoring of the functional
data was performed to avoid removing a different number of
timepoints across participants (hence leaving different numbers
of behaviorally relevant button presses across participants—a
potential confound when building models with task fMRI data
given that we are interested in predicting d’ scores from button
presses). In addition, similar to other recent CPM papers (i.e. Lake
et al. 2019; Scheinost et al. 2021; Dufford et al. 2022), steps were
taken during CPM and connectome-based ID analyses to limit
the effects of motion. Specifically, we adjusted the CPM model
for each participant’s mean FFD over the course of gradCPT and
found that motion was not driving predictions (i.e. the model
still successfully predicted gradCPT d’ scores when controlling
for motion (Spearman’s rho = 0.54, RMSE = 0.78, P = 0.0001)). Next,
when testing if the network model generalized in the test sample,
we again controlled for in-scanner head motion and found that
models were not confounded by mean FFD (i.e. successful pre-
diction was again achieved, Spearman’s rho = 0.67, P = 0.0008). In

addition, the fact that the model from the neurodiverse sample
generalizes to predict d’ in the validation sample (with slightly
faster trials; neurodiverse inter-trial interval of 1,000 ms, valida-
tion sample inter-trial interval of 800 ms) increases confidence
that model success is not due to participant head motion yoked
to stimuli presentation. Specifically, any overfitting in the neuro-
diverse sample due to motion artifact would impact model perfor-
mance in the validation sample. Because the model generalizes in
the validation sample with slightly different timing parameters,
this suggests that head motion is not driving the results.

In connectome-based ID, we focused our analyses on only the
low-motion longitudinal subjects previously described in Horien
et al. (2019). These participants have previously been used in
whole-brain and canonical network-based ID analyses, and it
was shown that connectome-based ID results were not driven by
head motion. From this low-motion sample (i.e. all participants
had a mean FFD < 0.1 mm for all resting-state scans), we fur-
ther considered how within-participant self-correlations derived
from the connectome-based ID process related to in-scanner
head motion in the present analyses. Across all 3 datasets, we
found there were no statistically significant relationships between
within-participant correlation scores and head motion in 5/6
cases (range of rho values: −0.0964 to 0.1236; P > 0.53 across all
samples; Supplemental Table 1). The only statistically significant
relationship we observed was in Pitt, and there was a nega-
tive association (high attention network: rho = −0.3636, P = 0.0153),
indicating higher head motion in this sample was associated
with lower within-subject self-correlation scores (in line with
previous results) (Horien et al. 2018; Graff, Tansey, Ip, et al. 2022a;
Graff, Tansey, Rai, et al. 2022b). These results suggest that head
motion is not acting as a confound in the connectome-based ID
results.

In sum, while head motion is always a concern in functional
connectivity analyses of brain–behavior relationships, the present
data suggest it is not driving the findings described here.

Code and data availability
Preprocessing was carried out using software freely available
here: (https://medicine.yale.edu/bioimaging/suite/). CPM code
is available here: (https://github.com/YaleMRRC/CPM). The
parcellation, the attention network models, and the connectome-
based ID code are available here: (https://www.nitrc.org/frs/?
group_id=51). Data from the longitudinal samples are openly
available through CoRR (http://fcon_1000.projects.nitrc.org/indi/
CoRR/html/). All other data is available from the authors upon
request.

Results
Prediction of in-scan attention scores in the
neurodiverse sample
In the neurodiverse sample, there were no differences between
neurodiverse and neurotypical participants in in-scanner head
motion (t(68) = 0.77, P = 0.4437) or gradCPT d’ (t(68) = −0.60,
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Table 3. Testing model performance in various scenarios.

Condition tested Spearman’s rho RMSE P-value

Mean gradCPT, 0.05 feat. sel. 0.54 0.78 0.0001

Mean gradCPT, 0.1 feat. sel. 0.52 0.79 0.0001
Mean gradCPT, 0.01 feat. sel. 0.50 0.79 0.0001
Mean gradCPT, 0.005 0.45 0.80 0.002
Mean gradCPT, 0.001 0.43 0.81 0.0001

Mean gradCPT, partial age 0.47 0.80 0.0001
Mean gradCPT, partial sex 0.52 0.77 0.0001
Mean gradCPT, partial IQ 0.49 0.84 0.003
Mean gradCPT, partial ADOS 0.53 0.77 0.0001

Session 1 0.31 0.85 0.031
Session 2 0.27 0.87 0.073

Mean gradCPT, neurodiverse individuals 0.37 0.82 0.001

Mean gradCPT, positive-association network only 0.53 0.78 0.0001
Mean gradCPT, negative-association network only 0.50 0.79 0.0001

The median-performing model after 1,000 iterations of CPM is reported for each condition tested. P-values were obtained from permutation testing. The result
from Fig. 2A is shown in the top row. gradCPT, gradual onset continuous performance task; ADOS, Autism Diagnostic Observation Schedule.

P = 0.5487). Across the sample, we observed that motion and
d’ were negatively correlated (r = − 0.35, P = 0.0034); we hence
adopted a rigorous motion control strategy to ensure motion was
not driving the brain–behavior models (Methods, “Motion control
considerations”).

Next, using CPM, we built a model using within-dataset cross-
validation to predict unseen participants’ gradCPT d’ scores from
functional connectivity data (in which higher d’ scores indicate
better task performance and imply better sustained attentional
state). The model successfully predicted gradCPT d’ scores in
the neurodiverse dataset (feature selection threshold of 0.05,
Spearman’s rho = 0.54, RMSE = 0.78, P = 0.0001, corrected; Fig. 2A;
Table 3). There was no statistically significant difference in model
error (i.e. between actual d’ scores and those predicted by the
model) between neurodiverse and neurotypical participants
(t(68) = 0.87, P = 0.3855). Prediction performance was also high
when we calculated the R2 between predicted and observed d’
scores (R2 = 29.12%, P = 0.0000014; see Supplemental Table 2 for R2

for all models reported in this section).
To assess the robustness of the d’ prediction, we used a multi-

verse approach to explore how results were affected by different
analytical choices (Steegen et al. 2016). We stress the point of this
approach is not to determine what pipeline gives the “best” pre-
diction performance; it is instead to gather converging evidence
across a range of analytical scenarios to determine the extent to
which arbitrary choices affect CPM results.

As the choice of feature selection threshold is arbitrary, we
started by testing a range of thresholds (Table 3), while still
controlling for motion. We were able to significantly predict d’
scores in all cases (feature selection threshold of 0.1: Spearman’s
rho = 0.52, RMSE = 0.79, P = 0.0001, corrected; feature selection
threshold of 0.01: Spearman’s rho = 0.50, RMSE = 0.79, P = 0.0001,
corrected; feature selection threshold of 0.005: Spearman’s
rho = 0.45, RMSE = 0.80, P = 0.002, corrected; feature selection
threshold of 0.001: Spearman’s rho = 0.43, RMSE = 0.81, P = 0.0001,
corrected). Interestingly, all models performed quite well, but
when more stringent feature selection thresholds were applied
(i.e. fewer edges were included in a model), performance
decreased.

We next performed analyses adjusting for participant age,
sex, IQ, and ADOS score. Each pipeline demonstrated similar
prediction performance of d’ (age-adjusted model: Spearman’s
rho = 0.47, RMSE = 0.80, P = 0.001, corrected; sex-adjusted model:

Spearman’s rho = 0.52, RMSE = 0.77, P = 0.0001, corrected; IQ-
adjusted model: Spearman’s rho = 0.49, RMSE = 0.96, P = 0.003,
corrected; ADOS-adjusted model: Spearman’s rho = 0.53,
RMSE = 0.77, P = 0.0001, corrected). Models were also built
for gradCPT scan 1 and gradCPT scan 2 separately (scan 1:
Spearman’s rho = 0.31, RMSE = 0.85, P = 0.031, corrected; scan
2: Spearman’s rho = 0.27, RMSE = 0.87, P = 0.073, corrected).
Prediction performance dropped in this case, echoing recent
results that more data fed into predictive models results in
higher accuracies (Taxali et al. 2021). In addition, we restricted
our analysis to performing CPM on only neurodiverse individuals
(e.g. those with a psychiatric condition, as outlined in Table 1) and
again observed successful d’ prediction (Spearman’s rho = 0.37,
RMSE = 0.82, P = 0.001, corrected), ensuring the CPM results derived
from the entire sample were not being driven by only the
neurotypical participants.

Finally, the choice to model attentional state using a “com-
bined network” (used in all analyses above) is also arbitrary.
We repeated the CPM prediction of d’ scores and tested the
positive-association and negative-association networks. We again
observed similar d’ prediction in both cases (positive-association
network: Spearman’s rho = 0.53, RMSE = 0.78, P = 0.0001, corrected;
negative-association network: Spearman’s rho = 0.50, RMSE = 0.79,
P = 0.0001, corrected; Fig. 2B and C).

In all, these results suggest that attentional state prediction is
robust in this sample and is not driven by potential confounding
factors.

External validation of the attention network
Overfitting—deriving statistical patterns specific to noise in a
sample—is a constant concern in machine learning studies.
The ultimate test is to assess how well a model works in an
independent dataset; we perform such a test here. We determined
which edges tended to contribute consistently to successful
prediction (922 in the positive-association network and 896 in
the negative-association network, 1,818 edges total) and built a
consensus model in the neurodiverse sample (Methods, “Testing
generalizability of the attention network”). Applying the model
to the validation sample comprising subjects completing the
same gradCPT, we observed successful prediction of d’ scores
(Spearman’s rho = 0.65, RMSE = 1.059 P = 0.0006, corrected; Fig. 3A).
The R2 between predicted and observed d’ scores was similarly
high (R2 = 42.24%, P = 0.00044).
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Fig. 3. Generalization of the attention network to an independent sample. A) Results using task data. B) Results using rest data. For all plots, actual
gradCPT d’ scores are indicated on the x-axis; predicted scores, on the y-axis. Higher d’ scores indicate better performance on the task and imply better
sustained attention. A regression line and 95% confidence interval are shown. RMSE, root mean square error; P = P-value.

We repeated analyses controlling for several other variables,
adjusting for in-scanner head motion (Spearman’s rho = 0.67,
P = 0.0008, corrected), participant sex (Spearman’s rho = 0.61,
P = 0.0014, corrected), as well as age (Spearman’s rho = 0.65,
P = 0.0009, corrected), and observed similar results. In addition,
when we tested both the positive-association and negative-
association networks separately, we found each of these networks
predicted d’ scores (positive-association network: Spearman’s
rho = 0.59, RMSE = 1.094, P = 0.021, corrected; negative-association
network: Spearman’s rho = 0.59, RMSE = 1.03, P = 0.0025, cor-
rected). In line with previous work (Rosenberg, Finn, et al. 2016a;
Rosenberg et al. 2020), we also tested whether the attention
network could be used to predict d’ scores from resting-state
data in the adult sample (specifically, using the resting-state
data to predict d’ scores from the gradCPT). We again found
the model generalized (Spearman’s rho = 0.42, RMSE = 1.002,
P = 0.0358, corrected; R2 = 19.80%, P = 0.0258; Fig. 3B).

We further tested the stability of results by altering how consis-
tently an edge had to appear across CPM iterations to be included
in the summary attention network (Methods, “Testing general-
izability of the attention network”). This resulted in 8 attention
summary networks, ranging from ∼100 to 3,000 edges. In 7/8
cases, the attention network generalized to predict d’ scores (range
of Spearman’s rho = 0.50–0.66; all P < 0.0104 after FDR correction;
Supplemental Table 3). The only summary network that did not
predict d’ score (Spearman’s rho = 0.23, P = 0.27) was quite small
(∼100 edges), approximately an order of magnitude smaller than
the original attention network tested above (and other networks
that have generalized) (Rosenberg, Finn, et al. 2016a; Greene et al.
2018; Yip et al. 2019). These results suggest that generalization in
this sample is robust to the arbitrary choices made when defining
a summary model.

Neuroanatomy of CPM predictive networks
We next performed post hoc visualizations to localize brain
connections contributing to the model. Together, the 1,818 total
edges comprise 5.08% of the connectome. Similar to other
CPM models (Rosenberg, Finn, et al. 2016a; Beaty et al. 2018;
Greene et al. 2018; Lake et al. 2019; Ju et al. 2020; Dufford
et al. 2022), the predictive edges in the positive-association and
negative-association networks comprise complex, distributed

networks spanning the entire brain (Fig. 4A and B). In line with
task demands, additional visualizations at the network level
(Fig. 4C and D) revealed that connections involving subcortical,
cerebellar, and visual networks were particularly important. In the
positive-association network, for example, the top 3 network pairs
containing the greatest proportion of edges involved subcortical,
cerebellar, and visual networks. In the negative-association
network, a network pair involving the cerebellum (the cerebellar-
frontoparietal network) contained the greatest proportion of
edges. For completeness, we present the matrices in Fig. 4C
and D in Supplemental Fig. 3 without normalizing by network
size; subcortical, visual, and cerebellar networks again tended
to harbor large numbers of edges. (See also Supplemental Fig.
4 for an additional visualization using circle plots and glass
brains.)

Further investigations into the neurobiology of d’
prediction
To add more biological context to the prediction of d’, we next
assessed how CPM performance is impacted by lesioning resting-
state networks. Specifically, we eliminated edges within and
between specific networks and reperformed CPM using the
gradCPT data in the neurodiverse sample. Consistent with the
distributed nature of the attention network, we observed little
impact when eliminating edges. That is, prediction performance
was still quite high—predictions were statistically significant in
all cases—and did not drop compared to the original whole-
brain model reported in Fig. 2A (Table 4). We also attempted
CPM using only the edges within resting-state networks; in all
cases, prediction performance was poor (Table 5). In 8/10 cases,
a negative correlation between predicted and observed d’ scores
was observed—that is, the model tended to predict a high d’ score,
when, in fact, the individual had a low d’ score (and vice versa). As
a final test, we performed CPM on edges outside the consensus
attention network, observing poor prediction performance
(Spearman’s rho = −0.79 between predicted and observed d’
scores, RMSE = 1.61, P = 0.0001 compared to the original whole-
brain CPM model). Together, these findings highlight the dis-
tributed nature of the consensus attention network and reinforce
that while some brain areas seem to be important in successful
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Fig. 4. Neuroanatomy of CPM predictive networks. A) The consensus positive-association network. B) The consensus negative-association network. For
both (A) and (B): A circle plot is shown in the upper left. The top of the circle represents anterior; the bottom, posterior. The left half of the circle plot
corresponds to the left hemisphere of the brain. A legend indicating the approximate anatomic “lobe” is shown to the left. The same edges are plotted in
the glass brains as lines connecting different nodes; in these visualizations, nodes are sized according to degree, the number of edges connected to that
node. Note that to aid in visualization, we have thresholded the matrices to only show nodes with a degree threshold >15 (unthresholded circle plots and
glass brains are shown in Supplemental Fig. 4). C) Matrix of the consensus positive-association network. D) Matrix of the consensus negative-association
network. For both (C) and (D): The proportion of edges in a given network pair; data have been corrected for differing network size. MF, medial frontal;
FP, frontoparietal; DM, default mode; MT, motor; VI, visual I; VII, visual II; VA, visual association; CO, cingulo-opercular; SB, subcortical; CB, cerebellum.

prediction (subcortical, visual, and cerebellar network), the atten-
tion network, as a whole, is greater than the sum of its parts for
predicting d’.

Individual-level stability of predictive network
model
An ultimate goal of using individual-level approaches in the
clinic is to infer future outcomes based on current data. Because
the attention network was defined in relation to a state-based
cognitive process that itself fluctuates (Cohen and Maunsell
2011; Esterman et al. 2013; Esterman et al. 2014; Rosenberg et al.
2015; Terashima et al. 2021), it is possible individual connectivity
patterns in the attention network might change over time. Hence,
we conducted an exploratory analysis using connectome-based
ID and longitudinal datasets with months to years between
scans, asking: Are connections in the attention network stable
enough within individuals to identify a participant from a
group?

Across the 3 longitudinal samples, we observed that the atten-
tion network results in ID rates well-above chance (ID rate range:

53.4–93.5%; P < 0.0001 across all samples; Supplemental Fig. 5).
Specifically, ID rates were high when there were months between
scans (UM dataset; 92.6% and 81.5% in the positive-association
and negative-association networks, respectively) and when
there were years between scans (Utah: positive-association net-
work = 84.4%, negative-association network = 81.3%). ID rates were
lower, but still above chance levels, in Pitt (positive-association
network = 53.4%, negative-association network = 62.5%). These
results suggest that participants retain their unique connectivity
signatures in the attention network.

We conducted additional analyses and determined that the
high ID rates were not being driven by head motion (Supplemental
Table 1), though motion might be contributing to the lower ID
rates observed in Pitt, as head motion was significantly correlated
with lower participant self-correlation scores. This is consistent
with other work demonstrating that higher head motion is asso-
ciated with lower ID rates (Horien et al. 2018; Graff, Tansey, Ip,
et al. 2022a; Graff, Tansey, Rai, et al. 2022b). We also performed ID
using other connections in the rest of the brain and observed no
differences in ID rates compared to the attention network (Sup-
plemental Fig. 5 and Supplemental Table 4). In all, these results
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Table 4. Results of CPM models with lesions to edges within and between resting-state networks.

Lesioned model Performance compared to whole-brain model

Lesioned network Spearman’s rho RMSE P-value Steiger’s z P-value

Medial frontal 0.54 0.77 0.0001 0.11 0.91
Frontoparietal 0.52 0.78 0.0001 0.39 0.70
Default mode 0.52 0.79 0.0001 0.51 0.61
Motor 0.52 0.77 0.0001 0.25 0.80
Visual I 0.54 0.77 0.0001 0.21 0.83
Visual II 0.54 0.78 0.0001 0.004 0.99
Visual association 0.54 0.78 0.0001 0.14 0.89
Cingulo-opercular 0.49 0.80 0.0001 0.84 0.40
Subcortical 0.49 0.79 0.0001 0.84 0.40
Cerebellum 0.51 0.79 0.0001 0.57 0.57

The median-performing model after 1,000 iterations is shown. P-values for the lesioned models were obtained from permutation testing. Steiger’s z is reported
for each lesioned model, compared to the original whole-brain model reported in Fig. 2A.

Table 5. Using conventionally defined resting-state networks to predict d’ scores.

Network model Performance compared to whole-brain model

Network Spearman’s rho RMSE P-value Steiger’s z P-value

Medial frontal −0.31 0.92 0.99 4.70 0.0001
Frontoparietal 0.14 0.88 0.31 2.96 0.003
Default mode −0.05 0.90 0.63 3.78 0.0001
Motor −0.11 0.92 0.77 3.90 0.0001
Visual I −0.22 0.92 0.99 4.56 0.0001
Visual II −0.09 0.91 0.72 3.99 0.0001
Visual association −0.36 0.92 0.99 4.98 0.0001
Cingulo-opercular −0.35 0.92 0.99 5.40 0.0001
Subcortical −0.29 0.92 0.99 4.61 0.0001
Cerebellum 0.35 0.84 0.23 1.92 0.055

The median-performing model after 1,000 iterations is shown. P-values for the network model were obtained from permutation testing. Steiger’s z is reported
for each lesioned model, compared to the original whole-brain model reported in Fig. 2A.

suggest that the attention network tends to retain participant-
specific connectivity signatures across months to years because
the brain as a whole retains participant-specific connectivity sig-
natures across months to years (see the Supplemental Materials
for more about the connectome-based ID results).

Discussion
In this work, we set out to test if it was possible to generate
connectome-based predictive models of attentional state in a
sample of youth, some of whom were neurodiverse. Using CPM, we
were able to build a predictive network model of in-scan sustained
attention scores. Crucially, we found the network generalized
out of sample, further suggesting that the brain–behavior model
we originally identified is a robust marker of attentional state.
The network model was spatially complex, comprising connec-
tions across the brain. Lastly, we conducted exploratory analyses
in 3 open-source samples using the network and connectome-
based ID.

The power and potential of dimensional models
Our work adds to the growing literature suggesting it is feasible
to use a dimensional approach to model individual differences in
brain–behavior relationships in neurodiverse youth. In addition
to autism symptoms (Lake et al. 2019), groups have developed

dimensional models predictive of behavioral inhibition (Rohr et al.
2020), social affect (Xiao et al. 2021), and adaptive functioning
(Plitt et al. 2015) in neurodiverse samples. In all cases, the pre-
dictive models comprise complex networks, with connections
spanning the entire brain (reviewed in Horien et al. 2022). Nev-
ertheless, subcortical and cerebellar networks tend to emerge as
major contributors in these models, regions we also observed as
important in our attention network. Furthermore, similar brain
areas have also been noted to play a role in attention (Rosenberg,
Finn, et al. 2016a; Green et al. 2017; Yoo et al. 2022), consistent with
the growing recognition that subcortical and cerebellar circuits
are important in mediating cognitive processes (Buckner 2013;
Clark et al. 2021).

Beyond helping to hone in on brain areas involved in sustaining
attention, the network identified is intriguing from a clinical
standpoint. For example, it has been shown that a network con-
nectivity model of attentional state (Rosenberg, Finn, et al. 2016a)
is sensitive to methylphenidate (Rosenberg, Zhang, et al. 2016b).
It is therefore possible the network identified here may help in
tracking changes after administration of a therapeutic. Though
more work is needed, it is generally encouraging that markers
identified through dimensional analyses appear to be sensitive
to clinically useful drugs. There is a need for objective, biological
markers in psychiatry, and dimensional approaches could offer
a framework to identify quantitative markers to help individuals
clinically (McPartland 2021).
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Generalizability of the attention network and
open science
Much has been written about the reproducibility crisis in biomed-
ical science (Pashler and Wagenmakers 2012; Open Science Col-
laboration 2015; Baker 2016), as well as the fear results might
suffer from a lack of generalizability (Yarkoni 2020), particularly
in psychiatry and psychology. We emphasize the present study
uses predictive modeling, which is an additional step beyond
association studies, that helps reproducibility (Rosenberg, Finn,
et al. 2016a; Yarkoni and Westfall 2017; Rosenberg et al. 2018;
Scheinost et al. 2019; Poldrack et al. 2020). Testing to ensure
results are robust across samples and contexts is also impera-
tive. This effort is especially important in neuroimaging, where
hopes have been high for clinical impact, yet there has been
little progress translating papers into practice (Chekroud 2017;
Chekroud and Koutsouleris 2018). Further, even when findings
might be clinically useful, many roadblocks stand in the way of
successful implementation (Chekroud and Koutsouleris 2018). It
is incumbent on researchers to test findings in multiple samples
to avoid having other investigators waste time and resources.

Hence, the fact the attention network generalizes out of sample
increases confidence in the original model and opens new oppor-
tunities for analysis. That is, the attention network generalized
from a young, neurodiverse sample to an older, neurotypical
sample. This finding is in line with the dimensional view of brain–
behavior relationships (Insel et al. 2010) and also supports the
notion that despite developmental changes in brain function,
a “core” brain network architecture associated with sustaining
attention is likely present (Yoo et al. 2022). An important next step
to further assess generalizability will be testing if the network
can generalize to predict different aspects of state- and trait-
related attention phenotypes. The fact that the network predicted
gradCPT d’ scores using gradCPT data indicates that the model
is capturing behavioral variance attributable to attentional state;
that we could also use rest data to predict the same gradCPT
d’ scores suggests the model is capturing variance related to
trait-based individual differences in attention. (We note both task
and resting-state data were used to predict d’ as a measure of
assessing internal reliability—previous work has indicated both
data types should yield successful predictions, with task-based
predictions tending to outperform rest-based predictions. As such,
our data are consistent with earlier reports (Greene et al. 2018;
Jiang et al. 2020).

In addition, determining if the network model generalizes to
predict other phenotypes entirely and/or in different study pop-
ulations could be of interest. To this end, we openly share the
attention network model and encourage other investigators to
test it widely. By sharing materials, particularly those from neuro-
diverse participants, we as a community can ensure our findings
are relevant for all individuals.

Individual stability of the attention network
Using connectome-based ID, it has been shown that the
connectome tends to be individually stable across short time
scales (minutes) (Miranda-Dominguez et al. 2014; Finn et al. 2015;
Kaufmann et al. 2017; Vanderwal et al. 2017; Waller et al. 2017;
Amico and Goni 2018) and longer time scales (months to years)
(Miranda-Dominguez et al. 2018; Horien et al. 2019; Demeter et al.
2020; Jalbrzikowski et al. 2020; Ousdal et al. 2020; Graff, Tansey,
Ip, et al. 2022a; Graff, Tansey, Rai, et al. 2022b). Further, individual
resting-state networks have tended to exhibit high stability (Finn
et al. 2015). Here, we tested if a state-based, behaviorally defined

network comprising edges across the brain exhibited the same
degree of stability.

Encouragingly, we observed the attention network is a stable
multivariate marker of connectivity over long time scales, and this
did not differ from the rest of the brain in terms of stability. We
interpret this finding as a positive for the field, as it suggests that
networks for other phenotypes, with different neurobiological
correlates, will likely exhibit a high degree of individual stability as
well. Indeed, this seems to be the case, as recent work has demon-
strated that predictive network models tend to have substantially
higher reliability than individual functional connections (Taxali
et al. 2021). Future studies could more rigorously assess how
stability of the attention network relates to CPM model perfor-
mance in longitudinal samples, as the datasets used here did
not contain assessments of attention. It is important to note that
participant identifiability of functional connections/networks is
not equivalent to predictive utility (Noble et al. 2017; Finn and
Rosenberg 2021; Mantwill et al. 2022). That is, correctly identifying
participants at a high rate does not mean that there will be a clear
link between the same connectomes and behavior. Nevertheless,
focusing on the stability and reliability of measurements is crucial
for those conducting functional connectivity studies (Noble et al.
2019), as a lack of reliability can continue to impede the clinical
utility of fMRI (Milham et al. 2021).

Limitations and future considerations
Compared to other open-source datasets (e.g. ABCD (Casey et al.
2018), the Human Connectome Project (Van Essen et al. 2013), UK
Biobank (Miller et al. 2016)), the samples used here are small.
Another limitation is participants in the neurodiverse sample
had fairly high IQ scores compared to the population at large
(Wingate et al. 2014). While IQ was not shown to be a confounding
factor in the predictive model, individuals with lower IQs may
have difficulties completing the gradCPT. Future studies could
address generalizability of the task and/or network in more varied
individuals. In addition, attention is a broad construct, and in this
work, we focused on the ability to sustain attentional state. More
research could be conducted to determine if it is possible to build
dimensional models of other aspects of attention. Relatedly, CPM
networks could be derived from other in-scanner tasks (e.g. an
emotion task) to investigate the biological specificity of different
network markers associated with different (emotional) pheno-
types, as well as how these overlap with the attention network
described here (while keeping in mind that confounds such as
head motion might play a role in both attention and emotion).

The longitudinal samples we used to measure stability of the
model did not contain behavioral/clinical data. It is unclear if
the predictive network is able to predict attention phenotypes
across longer time scales. Studies with the same participants
completing gradCPT at multiple time points could help to answer
this question. Finally, we have focused on a single phenotype
here. An important next step will be to use a multimodal,
multidimensional framework in large numbers of individuals—
incorporating numerous phenotypes and data types—to generate
findings across multiple spatial and temporal scales (Lombardo
et al. 2019). Such an approach holds the promise of illuminating
the complex biology underlying heterogenous neurodiverse
conditions.

Conclusion
In sum, we have shown that it is possible to generate task-based
predictive models of in-scan attentional state in a sample of

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/33/10/6320/6960607 by U

niversity of C
hicago user on 06 June 2023



Corey Horien et al. | 6331

youth and that such a model generalizes. Results support the fur-
ther development of predictive dimensional models of cognitive
phenotypes and suggest that such an approach can yield stable
imaging markers.
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