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Abstract
The endocannabinoid system is an important regulator of emotional responses 
such as fear, and a number of studies have implicated endocannabinoid signaling 
in anxiety. The fatty acid amide hydrolase (FAAH) C385A polymorphism, which is 
associated with enhanced endocannabinoid signaling in the brain, has been identi-
fied across species as a potential protective factor from anxiety. In particular, adults 
with the variant FAAH 385A allele have greater fronto-amygdala connectivity and 
lower anxiety symptoms. Whether broader network-level differences in connectiv-
ity exist, and when during development this neural phenotype emerges, remains 
unknown and represents an important next step in understanding how the FAAH 
C385A polymorphism impacts neurodevelopment and risk for anxiety disorders. 
Here, we leveraged data from 3,109 participants in the nationwide Adolescent Brain 
Cognitive Development Study℠ (10.04  ±  0.62  years old; 44.23% female, 55.77% 
male) and a cross-validated, data-driven approach to examine associations between 
genetic variation and large-scale resting-state brain networks. Our findings revealed 
a distributed brain network, comprising functional connections that were both sig-
nificantly greater (95% CI for p values = [<0.001, <0.001]) and lesser (95% CI for p 
values =  [0.006, <0.001]) in A-allele carriers relative to non-carriers. Furthermore, 
there was a significant interaction between genotype and the summarized connec-
tivity of functional connections that were greater in A-allele carriers, such that non-
carriers with connectivity more similar to A-allele carriers (i.e., greater connectivity) 
had lower anxiety symptoms (β = −0.041, p = 0.030). These findings provide novel 
evidence of network-level changes in neural connectivity associated with genetic 
variation in endocannabinoid signaling and suggest that genotype-associated neural 
differences may emerge at a younger age than genotype-associated differences in 
anxiety.
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1  | INTRODUC TION

Adolescence is a dynamic period of brain development, as well as a 
time when the incidence of mental health disorders peaks (Kessler 
et al., 2005; Lee et al., 2014). Anxiety disorders are among the most 
common psychiatric disorders that affect youth and frequently 
emerge during the adolescent period (Kessler et al., 2005). The en-
docannabinoid (eCB) system, a key modulator of emotion and stress 
response systems, has been implicated in the regulation of anxiety 
and fear-related behaviors across species (Lee et  al.,  2016; Lu & 
Mackie, 2016; Lutz et al., 2015; Mechoulam & Parker, 2013; Meyer 
et al., 2018).

Signaling of the eCB system in the brain occurs in part via the 
binding of a ligand, N-arachidonoylethanolamine (anandamide; AEA), 
to type 1 cannabinoid receptors (CB1; Jutras-Aswad et  al.,  2009; 
Katona & Freund, 2012; Lee et al., 2016). CB1 receptors are found 
throughout the brain and in multiple neuronal populations, most 
notably in GABAergic and glutamatergic neurons (Hill et al., 2007; 
Marsicano & Lutz, 1999; Meyer et al., 2018). AEA levels are regulated 
by fatty acid amide hydrolase (FAAH), which is an hydrolytic enzyme 
responsible for catabolizing intracellular AEA (Di Marzo, 2011). The 
FAAH C385A polymorphism (rs324420) is a common missense mu-
tation that destabilizes the FAAH protein, resulting in reduced FAAH 
activity and increased levels of AEA (Sipe et al., 2002). The A-allele of 
this variant has been implicated in human populations and knock-in 
mouse models of FAAH C385A as an important genetic modulator 
of both structural and functional connectivity and anxiety. In adults, 
converging evidence across species has observed lower anxiety 
symptoms and greater resting-state fronto-amygdala connectivity 
in carriers of the A-allele variant, relative to non-carriers (Dincheva 
et al., 2015; Gärtner et al., 2019). Furthermore, recent work found 
that the strength of fronto-amygdala connectivity was inversely 
correlated with amygdalar binding of a FAAH probe, although this 
study did not find evidence for a relationship between fronto-
amygdala connectivity and the FAAH C385A polymorphism (Green 
et al., 2021). Other studies have identified A-allele carriers as having 
lower threat-related amygdala reactivity (Hariri et al., 2009), as well 
as faster amygdala habituation to threat (Gunduz-Cinar et al., 2013). 
Several randomized controlled trials have also found that administra-
tion of a FAAH inhibitor in healthy adults resulted in improved fear 
extinction memory recall and decreased stress reactivity and nega-
tive affect (Mayo et al., 2020), improvement in anxiety symptoms for 
some individuals with social anxiety disorder (Schmidt et al., 2021), 
and moderation of activation in the amygdala, anterior cingulate, and 
insula (Paulus et al., 2020). Research in rodents has demonstrated 
that inhibition of FAAH in mice resulted in enhanced fear extinction 
learning (Gunduz-Cinar et al., 2013) and lower anxiety-like behaviors 
(Moreira et al., 2008). Together, this body of work provides strong 
evidence that reduced FAAH activity, and accompanying increases 
in AEA, modulate neural connectivity, and buffer anxiety.

During adolescence, the eCB system undergoes significant 
changes (Meyer et al., 2018). In particular, FAAH expression shows a 
marked increase across limbic and prefrontal regions of the brain in 

adolescent rodents, while AEA shows a concomitant decrease (Lee 
& Gorzalka, 2012; Lee et al., 2013). Furthermore, adolescence is a 
period of substantial neural maturation, including synaptic pruning 
(Spear, 2013), increases in myelination (Lebel & Deoni, 2018), and a 
shift in fronto-amygdala functional connectivity toward a more adult-
like state (Gabard-Durnam et al., 2014; Gee et al., 2013). These shifts 
are paralleled by decreased fear extinction (Pattwell et al., 2012) and 
impaired contextual fear retrieval (Pattwell et al., 2011) during ad-
olescence. Taken together, the convergence of these neurodevel-
opmental changes likely represents an adaptive state that supports 
burgeoning independence (Casey et al., 2015, 2016), but may also 
represent a sensitive window for the emergence of anxiety disorders 
(Lee et al., 2014; Powers & Casey, 2015).

Characterizing how functional connectivity and anxiety might 
vary during adolescence as a function of genetic variation in the 
FAAH C385A polymorphism remains an area of ongoing research. 
One cross-species study identified parallel evidence in mice and hu-
mans of an interaction between age and genotype, such that greater 
frontolimbic structural connectivity and decreased anxiety symp-
toms in A-allele carriers emerged only after age 12 (Gee et al., 2016). 
However, whether associations between FAAH genotype and func-
tional connectivity parallel these previous findings in the structural 
domain is yet unknown. Furthermore, studies investigating the neu-
ral correlates of the FAAH C385A polymorphism have tended to 
focus on fronto-amygdala connections, given the well-established 
role of this circuitry in fear learning (Milad & Quirk, 2012). However, 
advances in analytic techniques, together with growing evidence 
that key processes such as fear learning likely occur via distributed 
networks that engage regions throughout the brain (Fraenz et al., 
2020), pose the question of whether individuals with the FAAH 
C385A polymorphism are also characterized by global network-level 
differences.

In the present study, we aimed to examine associations be-
tween FAAH genotype and functional connectivity at rest in a large 
sample of youth participating in the Adolescent Brain Cognitive 

Significance

In a large developmental sample, this work aims to exam-
ine brain connectivity associated with genetic variation 
in endocannabinoid signaling that has been identified as 
a protective factor against anxiety. We demonstrate that 
the fatty acid amide hydrolase C385A polymorphism is 
associated with differential functional network connec-
tivity in youth and find a genotype-specific association 
between functional connectivity and anxiety symptoms. 
These findings suggest that genotype-associated changes 
in functional connectivity may precede the emergence of 
genotype-associated changes in anxiety symptoms, and 
may inform efforts to translate developmental neurosci-
ence to optimize treatments for anxiety disorders.
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Development Study℠ (ABCD Study®; Casey et  al.,  2018). We em-
ployed the network-based statistic (NBS; Zalesky et al., 2010), a data-
driven approach, to identify functional networks that differ between 
youth with versus without the variant FAAH 385A allele (i.e., A-allele 
carriers vs. non-carriers). We hypothesized that network-level differ-
ences in resting-state functional connectivity would exist between 
genotypes, and that fronto-amygdala connections would emerge as 
having greater connectivity in A-allele carriers than non-carriers.

2  | MATERIAL S AND METHODS

2.1 | Participants

Subjects were 3,109 youth (10.04 ± 0.62 years old; 44.23% female, 
55.77% male) who participated in the ABCD Study. Using harmonized 
protocols (Casey et al., 2018) across 21 sites, this ongoing study has 
recruited over 11,000 children and aims to follow them for 10 years 
to characterize neurobiological and psychological development from 
late childhood to young adulthood. Parents provided written in-
formed consent, and children provided verbal assent to participate in 
the study. Full details of ethics and oversight in the ABCD Study have 
been previously published (Clark et al., 2018). In the present study, 
our final sample (n = 3,109) was derived from a subset of individuals 
(N = 5,772) with fMRI data available through the ABCD Fast Track 
option as of April 2018 (Rapuano et  al.,  2020). Within this subset 
of 5,772 participants with fMRI data, we excluded individuals with 
excessive motion during all of their resting-state scans (mean frame-
wise displacement ≥0.15 mm; n = 1,612), as well as individuals with 
autism spectrum disorder (n = 52), cerebral palsy (n = 2), epilepsy 
(n = 30), hemorrhage (n = 2), intellectual disability (n = 3), schizo-
phrenia (n = 1), traumatic brain injury (n = 1), or who were missing 
data for covariates (n = 916). We also excluded participants whose 
genetics data did not pass quality inspection, as reported in the 
Known Issues with Data Release 3.0 (https://nda.nih.gov/edit_colle​
ction.html?id=2573; n = 44). Detailed demographic data including 
age, sex, race, ethnicity, maternal education, and family income can 
be found in Table 1. Further details about the neural and behavioral 
data collected as part of the ABCD Study can be found in the original 
descriptor papers (Barch et al., 2018; Casey et al., 2018).

2.2 | Genetic, demographic, and symptom data

Baseline measures of behavioral, genetic, and demographic variables 
were obtained through the NIMH Data Archive Release 3.0 (https://
doi.org/10.15154/​1519007). We used the DSM-oriented anxiety 
disorder symptom scale from the child behavior checklist (CBCL; 
Achenbach et al., 2003; Achenbach & Rescorla, 2001) to measure 
anxiety symptoms in this sample. For each participant, a raw total 
score was computed as a sum of their parent or guardian's responses 
to the 11 items that comprise the anxiety disorder symptom scale. 
We used the Shapiro–Wilk test for normality to determine whether 

these scores required log transformation. Anxiety disorder symp-
tom scores were used to evaluate associations between symptoms, 
genotype, and network connectivity. Subject-level genotype infor-
mation was obtained from the imputed genetics data, which sta-
tistically infers unobserved genotypes. These data were generated 
using genotyping calls from the Affymetrix Smokescreen array, using 
a previously described pipeline (Kendall et al., 2017).

2.3 | Resting-state data

Details of imaging parameters and acquisition have been previously 
published (Casey et al., 2018). Each participant underwent three to 
four 5-min runs of a resting-state functional scan. At Siemens sites, 
if framewise Integrated Real-time Motion Monitoring (FIRMM) soft-
ware (Dosenbach et al., 2017) indicated that 12.5-min of usable data 
(Power et al., 2014) had been collected, the fourth resting-state run 
was not collected (Hagler et  al.,  2019). All resting-state data were 
acquired on either a Siemens, GE, or Phillips 3T MRI scanner, using 
a 32 channel head coil, on 27 scanners across 21 sites. Anatomical 
images were acquired using a T1w scan. Raw dicom images from the 
resting-state scans were obtained via ABCD Fast Track (April 2018) 
and preprocessed using BioImage Suite (Joshi et  al.,  2011). This 
pipeline has been previously described (Greene et al., 2018; Horien 
et al., 2019), and includes standard preprocessing steps such as slice 
time and motion correction, registration to the MNI template, regres-
sion of mean time courses in white matter, cerebrospinal fluid, and 
gray matter; and low-pass filtering. All non-linear registrations were 
visually inspected to confirm quality and accuracy. Finally, these data 
were parcellated using the Shen 368 functional connectivity atlas, 
and connectivity matrices were computed using Pearson correlations 
(Horien et  al.,  2019; Lacadie et  al.,  2008; Salehi et  al.,  2020; Shen 
et al., 2013; Yeo et al., 2011). Edges with negative correlations were 
retained in all analyses. One resting-state run was included in analysis 
for each participant. Mean framewise displacement was computed 
for each resting-state run, and subjects with at least one resting-state 
scan with mean framewise displacement under a motion threshold 
of 0.15mm were included in the analysis (Greene et al., 2018; Horien 
et al., 2018, 2019; Rapuano et al., 2020). For subjects with two or 
more scans for which the mean framewise displacement was under 
0.15mm, we selected the run which had the lowest mean framewise 
displacement for use in the following analyses. Mean framewise dis-
placement was also included as a fixed-effects covariate in our sta-
tistical modeling. Statistical analyses were performed in Python 3.7 
(Rossum, 1995), while network visualizations were conducted using 
BioImage Suite Web (Papademetris et al., 2006) at multiple levels of 
analysis to aid interpretation (Horien et al., 2020).

2.4 | Analytic approach: Network-based statistic

We employed a Python implementation of the NBS toolbox 
(BCTPY version 0.5.0; https://github.com/aestr​ivex/bctpy) and 
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1,000 iterations of 10-fold cross-validation (via ScikitLearn, version 
0.21.3; Pedregosa et  al.,  2011) in order to perform a data-driven 
examination of network-level differences between A-allele car-
riers and non-carriers (Zalesky et  al.,  2010). The NBS is a proce-
dure that is optimized to control for the vast number of multiple 
comparisons inherent to testing differences in every functional 
connection, or edge, by comparing the size of significant inter-
connected edges with random networks of interconnected edges 
(Zalesky et  al.,  2010). Essentially, the NBS performs two-tailed t 
tests for each edge in connectivity matrices between two groups 
of subjects. For each test, the t-statistic is thresholded at a given 
level, and edges meeting or surpassing that threshold form suprath-
reshold edges. The sizes of interconnected components within this 

suprathreshold matrix are then computed and stored. This process 
is then iterated k times, randomly permuting edges of the two 
groups and then counting the number of edges of the largest in-
terconnected component. For each iteration, a p value indicating 
the likelihood of the identified component size relative to the null 
distribution is calculated.

2.5 | Analytic approach: Network identification

Our sample comprised 1,796 individuals with a homozygous CC 
genotype, and 1,313 individuals with an A-allele (genotype AC 
or AA). We applied 1,000 iterations of 10-fold cross-validation, 

TA B L E  1   Group comparisons for all variables were performed using Pearson's Chi-squared tests

Sample demographics

Genotype Overall (n = 3,109) AA/AC (n = 1,313) CC (n = 1,796) p value

Race 0.396a 

Asian 46 (1.5%) 23 (1.8%) 23 (1.3%)

Black 265 (8.5%) 115 (8.8%) 150 (8.4%)

Multiracial 347 (11%) 150 (11%) 197 (11%)

Native American 14 (0.5%) 7 (0.5%) 7 (0.4%)

Other 80 (2.6%) 28 (2.1%) 52 (2.9%)

Pacific Islander 1 (<0.1%) 0 (0%) 1 (<0.1%)

White 2,331 (75%) 977 (74%) 1,354 (75%)

Declined to answer 10 (0.3%) 3 (0.2%) 7 (0.3%)

Do not know 16 (0.5%) 10 (0.8%) 6 (0.3%)

Ethnicity <0.001

Hispanic 508 (16%) 253 (19%) 255 (14%)

Non-Hispanic 2,601 (84%) 1,060 (81%) 1,541 (86%)

Sex 0.181

Female 1,375 (44%) 599 (46%) 776 (43%)

Male 1,734 (56%) 714 (54%) 1,020 (57%)

Age (months) 0.092

121 (114–127) 121 (115–127) 121 (114–127)

Family income (annual) <0.001

<$50,000  705 (23%) 365 (28%) 340 (19%)

$50,000−$100,000 943 (30%) 381 (29%) 562 (31%)

$100,000−$200,000 1,042 (34%) 406 (31%) 636 (35%)

$200,000+ 419 (13%) 161 (12%) 258 (14%)

Maternal education <0.001

<HS 101 (3.2%) 63 (4.8%) 38 (2.1%)

HS or GED 730 (23%) 322 (25%) 408 (23%)

BA or AA 1,438 (46%) 601 (46%) 837 (47%)

Masters 637 (20%) 249 (19%) 388 (22%)

Doctoral 203 (6.5%) 78 (5.9%) 125 (7.0%)

Note: The median and IQR values are reported for age.
Abbreviations: AA, Associate of Arts degree; BA, Bachelor of Arts degree; GED, General Educational Development test; HS, high school degree.
aTwo categories (Declined to Answer and Pacific Islander) were omitted from the Chi-squared test for participant race, due to low endorsement.
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stratifying each fold such that an equal proportion of A-allele 
carriers and non-carriers were included in both training and test-
ing folds (Scheinost et  al.,  2019). We then applied the NBS to 
each of the training folds, using a t-statistic threshold of t = 2.58, 
approximately equivalent to p = 0.01 for two-tailed tests. Within 
each of 9,000 training folds, we used k  =  100 permutations to 
identify the significance of the network of edges differing be-
tween A-allele carriers and non-carriers relative to the null 
distribution.

2.6 | Analytic approach: Network confirmation

After using the NBS to identify network-level differences within 
each training fold, we applied the resulting adjacency matrix to 
the held-back testing fold, and separated the network into edges 
where A-allele carriers had greater connectivity than non-carriers, 
and edges where A-allele carriers had lesser connectivity than non-
carriers. Next, we summed the connection strengths of each edge 
within both sets of connections (i.e., where A-allele carriers had 
greater connectivity than non-carriers, and where A-allele carriers 
had lesser connectivity than non-carriers) to obtain two network 
strength summary statistics (Finn et  al.,  2015; Rosenberg, Finn, 
et al., 2016; Rosenberg, Zhang, et al., 2016). All numeric-type vari-
ables (network summary statistics, age, genetic ancestry, and mean 
framewise displacement) were then z-scored so that models would 
produce standardized beta coefficents. Using mixed-effects models 
implemented via the statsmodels python package (version 0.12.2; 
Seabold & Perktold, 2010), we then evaluated the associations be-
tween network strength summary statistics and genotype within 
the testing fold while controlling for fixed effects of age, biologi-
cal sex, pubertal status, family income, maternal education, ethnic-
ity, genetic ancestry, and mean framewise displacement, as well as 
a nested random effect—specifically, a random intercept for family 
nested within scanner serial number (capturing both scanner and 
site effects). We opted to include family income, maternal educa-
tion, and ethnicity within all models due to the fact that these varia-
bles differed significantly between A-allele carriers and non-carriers 
(Table 1). We calculated descriptive statistics for standardized beta 
coefficients, t statistics, and p values resulting from cross-validation. 
Finally, we collapsed across the adjacency matrices identified across 
9,000 training folds such that edges that were selected in 75% or 
more folds were retained, while the rest were discarded. This yielded 
a final adjacency matrix that was then applied to the whole dataset 
for post hoc analyses examining associations between connectivity 
and anxiety symptoms.

2.7 | Clinical symptoms

Using mixed-effects modeling, we tested whether anxiety symp-
toms differed by genotype. In this model, we controlled for fixed ef-
fects of age, biological sex, pubertal status, family income, maternal 

education, ethnicity, genetic ancestry, and mean framewise dis-
placement, as well as a nested random effect, specifically a random 
intercept for family nested within site.

2.8 | Post hoc analyses

After testing whether network-level differences were present 
between A-allele carriers and non-carriers, we next examined 
whether connectivity within this identified network was associ-
ated with anxiety symptoms across the whole sample. We ap-
plied the final adjacency matrix, retaining connections that were 
selected in 75% or more of the 9,000 training folds, to the whole 
dataset (n = 3,109). We again separated the network into edges 
where A-allele carriers had greater connectivity than non-carriers 
and edges where A-allele carriers had lesser connectivity than 
non-carriers. As before, we then summed the r values of these 
sets of edges to obtain network strength summary scores (Finn 
et  al.,  2015; Rosenberg, Finn, et  al.,  2016; Rosenberg, Zhang, 
et al., 2016). In order to examine associations between connectiv-
ity and symptoms, we then performed two analyses using mixed-
effects models: first, we examined whether connectivity of either 
the set of edges where A-allele carriers had greater connectivity 
than non-carriers, or the set of edges where A-allele carriers had 
lesser connectivity than non-carriers, was associated with anxi-
ety symptoms (controlling for fixed effects of age, biological sex, 
pubertal status, family income, maternal education, ethnicity, 
genetic ancestry, and mean framewise displacement, as well as 
a nested random effect, specifically a random intercept for fam-
ily nested within scanner serial number). Second, we evaluated 
whether genotype moderated the association between connec-
tivity of a given set of edges and anxiety symptoms (controlling 
for fixed effects of age, biological sex, pubertal status, family in-
come, maternal education, ethnicity, genetic ancestry, and mean 
framewise displacement, as well as a nested random effect, spe-
cifically a random intercept for family nested within scanner serial 
number), such that connectivity was associated with symptoms in 
a genotype-specific manner.

2.9 | Examination of fronto-amygdala edges

Given robust evidence in the literature that increased fronto-
amygdala connectivity is associated with reduced anxiety symptoms 
starting in adolescence, we tested whether fronto-amygdala edges 
were included within the network identified by NBS, and further, 
whether they were included in the set of edges where A-allele car-
riers had greater connectivity than non-carriers. In order to exam-
ine this within both sets of edges, we selected all edges that had at 
least one connection with a node corresponding to either the left or 
right amygdala (as defined in the Shen 368 atlas; Horien et al., 2019), 
so that all edges connected to bilateral amygdalae were retained. 
Additionally, we computed the number of bilateral amygdala edges 
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that would be expected at a chance level. As both the left and right 
amygdala nodes have 368 possible connections (with one possi-
ble duplicated edge across both matrices connecting left and right 
amygdala nodes), and matrices representing these connections 
are symmetrical, we determined the number of edges expected at 
chance levels by multiplying the overall proportion of edges selected 
by the network by 367.5.

3  | RESULTS

3.1 | Distribution of anxiety disorder symptoms 
scores

Application of the Shapiro–Wilk test for normality to the CBCL anxi-
ety disorder symptoms scores determined that these scores were 
not normally distributed (p < 0.001). We thus applied a log trans-
formation to this variable, which reduced skew from 1.66 to 0.29 
and kurtosis from 3.36 to −0.99. All subsequent modeling examining 
associations between anxiety symptoms and other measures of in-
terest used this log-transformed score.

3.2 | Identification of resting-state 
connectivity networks

As predicted, we identified a network across all training folds that 
differed significantly between A-allele carriers and non-carriers. 
This network included edges where A-allele carriers had greater 
connectivity compared to non-carriers, as well as lesser connec-
tivity compared to non-carriers (across all folds, pNBS  <  0.01). 
Within the testing folds, results from mixed-effects models 
also demonstrated significant differences between genotypes 
among connections where A-allele carriers showed greater con-
nectivity than non-carriers (95% CI for β coefficients  =  [0.565, 
1.076]; 95% CI for t values =  [5.315, 10.645]; 95% CI for p val-
ues = [<0.001, <0.001]), and among connections where A-allele 
carriers showed lesser connectivity than non-carriers (95% CI for 
β coefficients = [−0.275, −0.868]; 95% CI for t values = [−2.746, 
−8.532]; 95% CI for p values = [0.006, <0.001]). These identified 
sets of edges comprised distributed networks involving regions 
throughout the brain (Figure 1). Histograms illustrating the dis-
tribution of r values for edges where A-allele carriers had greater 
connectivity than non-carriers, and edges where A-allele carriers 
had lesser connectivity than non-carriers, can be found in Figure 
S1.

3.3 | Clinical symptoms

We did not observe a significant association between genotype and 
log-transformed anxiety symptom scores (β  =  −0.031, t  =  −1.187, 
SD = 0.026, p = 0.235).

3.4 | Post hoc analyses

After selecting only edges that had been identified in 75% or more 
of the testing folds, we retained a network containing 756 edges, ap-
proximately 0.011% of 67,528 possible connections, which was then 
applied to the full sample to evaluate associations between connec-
tivity and log-transformed anxiety symptoms. Using mixed-effects 
models across the entire dataset, we found that there was no asso-
ciation between summary statistics for either the set of edges where 
A-allele carriers had greater connectivity than non-carriers and log-
transformed anxiety symptoms (β = −0.009, t = −0.630, SD = 0.014, 
p = 0.528), or for the set of edges where A-allele carriers had lesser 
connectivity than non-carriers and log-transformed anxiety symp-
toms (β = −0.003, t = −0.233, SD = 0.015, p = 0.823). However, gen-
otype significantly moderated the association between the summary 
statistic for connectivity of the set of edges where A-allele carriers 
had greater connectivity than non-carriers and log-transformed anx-
iety symptoms (Figure 2; β = 0.083, t = 3.114, SD = 0.027, p = 0.002). 
Whereas there was no association between connectivity of the set 
of edges where A-allele carriers had greater connectivity than non-
carriers and log-transformed anxiety symptoms among A-allele car-
riers (β = 0.038, t = 1.649, SD = 0.023, p = 0.099), connectivity of the 
set of edges where A-allele carriers had greater connectivity than 
non-carriers was negatively associated with log-transformed anxiety 
symptoms among non-carriers (β = −0.041, t = −2.167, SD = 0.019, 
p = 0.030). Genotype also significantly moderated the association 
between the summary statistic for connectivity of the set of edges 
where A-allele carriers had lesser connectivity than non-carriers 
and log-transformed anxiety symptoms (β  =  −0.061, t  =  −2.304, 
SD = 0.026, p = 0.021). However, this association was not significant 
within either A-allele carriers (β = −0.041, t = −1.756, SD = 0.023, 
p = 0.079) or within non-carriers (β = 0.023, t = 1.194, SD = 0.020, 
p = 0.232).

3.5 | Examination of fronto-amygdala edges

In order to determine whether fronto-amygdala edges were included 
within the network identified by NBS, we filtered the sets of identi-
fied edges by node, retaining only edges within each set that were 
connected to either the left or right amygdala (Figure 3). The total 
number of amygdala-connected edges (7) exceeded the number 
we would expect to be identified within the NBS network based on 
chance (4). One of these edges was a fronto-amygdala connection, 
which was contained within the set of edges where A-allele carriers 
had lesser connectivity than non-carriers.

4  | DISCUSSION

Given a growing literature on developmental changes in endocan-
nabinoid signaling related to anxiety, we applied a data-driven ap-
proach to examine differences in functional connectivity across the 
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brain associated with genetic variation in the FAAH C385A polymor-
phism among a large sample of youth. Our findings provide novel 
evidence that network-level differences in functional connectivity 

associated with the FAAH C385A polymorphism are present dur-
ing preadolescence, and may precede the emergence of genotype-
associated differences in anxiety symptoms. The identified network 

F I G U R E  1   Network differences between A-allele carriers and non-carriers. Location and distribution of functional connections (edges) 
selected using the network-based statistic among lobes and functionally-defined networks. In the top panel, the red lines indicate edges 
connecting the red spheres, which represent nodes where A-allele carriers have greater connectivity than non-carriers. The blue lines 
indicate edges connecting the blue spheres, which represent nodes where non-carriers have greater connectivity than A-allele carriers. 
Nodes are sized according to degree (i.e., the number of edges connected to a given node). In the bottom left panel, the same nodes and 
edges are visualized in circle plots, in which nodes are grouped according to anatomic location. The top of the circle represents anterior; the 
bottom, posterior. The left half of the circle plot corresponds to the left hemisphere of the brain and the right half to the right hemisphere 
of the brain. A legend indicating the approximate anatomic “lobe” is shown to the left. In the chord plots in the bottom right panel, the edges 
are visualized by functional network to which each edge belongs. A legend indicating the corresponding functional networks is shown on the 
right. Vis. Assoc., Visual Association Network
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involved a distributed set of regions, involved in all major functional 
networks across the brain (e.g., medial frontal, frontoparietal, motor, 
and visual networks). Moreover, non-carriers with connectivity 
more similar to A-allele carriers’ connectivity (i.e., greater connec-
tivity) showed decreased anxiety symptoms, suggesting a possible 
brain phenotype linking anxiety and the FAAH C385A genotype. 
This finding underscores the relation between brain connectivity 
and symptom emergence in the developing brain, and emphasizes 
the importance of a multimodal approach in examining associations 
between brain and behavioral phenotypes.

The network-based statistic approach used in this study allowed 
us to identify a broad network of functional connections that dif-
fer as a function of genetic variation in the FAAH C385A polymor-
phism, providing evidence that genotype-related changes extend 
beyond frontolimbic circuitry to regions involved in other primary 
functional networks of the brain. These findings highlight the dis-
tributed nature of neural processing (Finn et  al.,  2015; Greene 
et  al.,  2018; Rapuano et  al.,  2020; Rosenberg, Finn, et  al.,  2016), 
and support growing evidence that emotion processing, which is 
thought to be regulated in part by the endocannabinoid system, 

F I G U R E  2   Associations between connectivity and anxiety symptoms. Genotype moderated the association between connectivity and 
log-transformed anxiety symptoms. The left plot depicts the interaction between genotype and strength of edges where A-allele carriers 
had greater connectivity than non-carriers. On the top right, non-carriers displayed a negative association between strength of edges where 
A-allele carriers had greater connectivity than non-carriers and log-transformed anxiety symptoms. On the bottom right, A-allele carriers did 
not display an association between strength of edges where A-allele carriers had greater connectivity than non-carriers and log-transformed 
anxiety symptoms. In order to most clearly illustrate both the interaction and the underlying data, we opted to show the interaction (y-axis 
zoomed in; left) and the associations between connectivity and anxiety within each genotype (right). Thus, the values on the y-axis in the 
zoomed-in plot on the left represent a smaller range of values than the y-axes in the plots on the right. In all plots, the x-axes represent the 
z-scored summed network connectivity statistic, representing the connectivity (or strength) of edges for which A-allele carriers had greater 
connectivity than non-carriers. See Figure S2 for rain cloud plots of raw CBCL Anxiety Disorder Symptoms scores

F I G U R E  3   Amygdala-connected edges that differed between A-allele carriers and non-carriers. Glass brain visualization of all amygdala-
connected edges that were retained within the network identified using the network-based statistic. Two amygdala-connected edges where 
A-allele carriers had greater connectivity than non-carriers were identified, while five edges where A-allele carriers had lesser connectivity 
than non-carriers were identified. All edges were connected to the right amygdala
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involves many regions across the brain (Camacho et  al.,  2019; 
Saarimäki et al., 2016).

This robust detection of network-level differences in functional 
connectivity at rest in children ages 9–10 has important implications 
for our understanding of how alterations in endocannabinoid sig-
naling relate to neural and behavioral changes during development. 
Developmentally specific decreases in FAAH activity and increases 
in AEA likely contribute to the timing of when genotype-related dif-
ferences in functional connectivity emerge. Previous cross-species 
work has shown that greater structural frontolimbic connectivity 
and lower anxiety symptoms in A-allele carriers emerge around the 
transition to adolescence (Gee et al., 2016). The lack of differences in 
anxiety symptoms between A-allele carriers and non-carriers in the 
current study is consistent with past findings that anxiety symptoms 
did not differ by genotype prior to adolescence. The younger sam-
ple examined here did show network-level differences in functional 
connectivity at rest, suggesting that changes in endocannabinoid 
signaling associated with genetic variation may shape functional 
connectivity prior to differences in structural connectivity. Previous 
work has also consistently observed greater connectivity specifically 
in frontolimbic circuitry in A-allele carriers by adulthood (Dincheva 
et al., 2015; Gärtner et al., 2019). Interestingly, the present analy-
sis did not identify greater fronto-amygdala connectivity in A-allele 
carriers, which may be consistent with the theory that previously re-
ported increases in frontolimbic connectivity and decreases in anxi-
ety symptoms emerge at a later developmental stage. However, it is 
also possible that the connectivity differences observed in A-allele 
carriers in the current work may reflect an intermediate pheno-
type that is more closely linked to genotype than anxiety (Meyer-
Lindenberg, 2009), or that genotype-related differences in anxiety 
that were observed in prior work may not have survived in larger 
samples.

Cross-species research has demonstrated that the presence of 
the FAAH C385A polymorphism, as well as pharmacologically in-
duced FAAH inhibition, result in enhanced fear extinction learning, 
decreased autonomic stress response, decreased stress-related 
negative affect (Mayo et al., 2020), more rapid amygdala habitua-
tion to threat (Gunduz-Cinar et al., 2013; Hariri et al., 2009), and 
reduced anxiety levels (Dincheva et  al.,  2015; Gee et  al.,  2016; 
Schmidt et al., 2021). The clinical potential of FAAH inhibition is 
evident, and indeed, randomized controlled trials have been con-
ducted in adults (Mayo et al., 2020; Paulus et al., 2020; Schmidt 
et al., 2021). Reduction in FAAH activity levels may confer pro-
tective effects for A-allele carriers as early as adolescence (Gee 
et  al.,  2016), but elucidating the complex interactions between 
neural development and genetic variation will be critical in order 
to optimize treatments based on developmental stage (Casey 
et al., 2015).

While this study enhances understanding of the neural changes 
that accompany the FAAH C385A polymorphism prior to adoles-
cence, it will be important for future research to build upon various 
aspects of this research. Although we conducted this work using a 
subset of data from a large, nationwide study with a population-based 

sample (Compton et al., 2019; Garavan et al., 2018), it will be neces-
sary to confirm results from this study through external validation 
(ideally in a dataset with an equal or larger, demographically diverse 
sample). Importantly, while large sample sizes provide increased 
statistical power to observe smaller effects, assessing clinical sig-
nificance can be challenging (Anvari et al., 2021; Dick et al., 2020). 
As benchmarked via heuristics for standardized betas (Acock, 2008), 
in the current work we observed a large effect size for the associ-
ation between genotype and connectivity greater for A-allele car-
riers than non-carriers, a moderate effect size for the association 
between genotype and connectivity lesser for A-allele carriers than 
non-carriers, and small effect sizes for the associations between 
connectivity and anxiety symptoms. Following up on these findings 
in a separate dataset and longitudinally may inform the extent to 
which they are clinically meaningful. In this study we examined only 
cross-sectional neuroimaging data from youth ages 9–10. Given that 
changes in neural circuitry and behavior during adolescence coin-
cide with an increase in FAAH activity as endocannabinoid signaling 
shifts, it will be important to further explore how associations be-
tween genotype, neural connectivity, and symptoms fluctuate over 
the course of development. Such investigations with the release 
of future longitudinal ABCD data will provide insight into whether 
the patterns of connectivity described in this paper reflect a time-
limited phenotype of brain connectivity during a period of signifi-
cant change, or potentially a more stable alteration in connectivity 
that remains throughout adolescence, as well as whether the direc-
tionality of fronto-amygdala connectivity observed here persists. In 
addition, while the current findings suggest that the FAAH C385A 
polymorphism is associated with functional alterations in regions 
distributed across many networks in the brain, we anticipate that fu-
ture work will be helpful for better understanding the cognitive and 
behavioral implications of such widespread, network-level differ-
ences. Finally, although neural and behavioral differences have been 
linked with the FAAH C385A polymorphism across species, more 
complex genetic dynamics beyond a single candidate gene likely 
shape these outcomes. In order to better characterize the impact 
of the FAAH polymorphism, it will be important to examine associa-
tions between functional connectivity and anxiety symptoms in the 
context of other potential genetic modulators of endocannabinoid 
signaling.

In conclusion, the present findings identified a large-scale func-
tional network that differed among youth as a function of genetic 
variation in the FAAH C385A polymorphism. This study demon-
strates the utility of data-driven methods in extending current 
knowledge about the neural circuitry related to the endocanna-
binoid system and development, and provides novel evidence of 
differences in functional connectivity associated with the FAAH 
C385A polymorphism that may be present prior to the emergence of 
differences in anxiety symptoms by genotype. Finally, this study lays 
the groundwork for future research to examine precise trajectories 
of functional connectivity and symptom development throughout 
adolescence, enhancing our understanding of how the FAAH C385A 
polymorphism may buffer against anxiety.
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SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.
FIGURE S1 Histogram distributions of network summary statistics 

(summed correlation r values) for edges where A-allele carriers had 
greater connectivity than non-carriers (left) and edges where A-
allele carriers had lesser connectivity than non-carriers (right). For 
edges where A-allele carriers had greater connectivity than non-
carriers, the summed r values were less negative for A-allele carriers 
than for non-carriers. For edges where A-allele carriers had lesser 
connectivity than non-carriers, the summed r values were less posi-
tive than for non-carriers
FIGURE S2 Distribution of raw CBCL anxiety disorder symptoms 
scores, plotted by genotype
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