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The human brain flexibly controls different cognitive behaviors, such as memory and attention, to satisfy contex-
tual demands. Much progress has been made to reveal task-induced modulations in the whole-brain functional
connectome, but we still lack a way to model context-dependent changes. Here, we present a novel connectome-
to-connectome (C2C) transformation framework that enables us to model the brain’s functional reorganization
from one connectome state to another in response to specific task goals. Using functional magnetic resonance
imaging data from the Human Connectome Project, we demonstrate that the C2C model accurately generates
an individual’s task-related connectomes from their task-free (resting-state) connectome with a high degree of
specificity across seven different cognitive states. Moreover, the C2C model amplifies behaviorally relevant indi-
vidual differences in the task-free connectome, thereby improving behavioral predictions with increased power,
achieving similar performance with just a third of the subjects needed when relying on resting-state data alone.
Finally, the C2C model reveals how the brain reorganizes between cognitive states. Our observations support the
existence of reliable state-specific subsystems in the brain and demonstrate that we can quantitatively model how
the connectome reconfigures to different cognitive states, enabling more accurate predictions of behavior with
fewer subjects.

1. Introduction thermore, the functional connectome is unique to each individual like

their fingerprint (Finn et al., 2015; Miranda-Dominguez et al., 2014).

The human brain is versatile, regulating various behavioral and cog-
nitive functions appropriately for different task situations. A fundamen-
tal question in neuroscience has been to understand how the brain can
flexibly generate such diverse functions. Studies have developed ap-
proaches at a wide spectrum of scales, from the micro-scale (e.g., cellu-
lar or molecular [Furey et al., 2000; Lisman et al., 2018]) to the macro-
scale (whole-brain [Gray et al., 2003; Rosenberg et al., 2016]), to reveal
detailed working mechanisms of human cognition, including memory,
attention, and decision-making.

The brain supports cognition through the coordinated activity of
distributed areas, which is often studied as functional connectivity and
the connectome—the whole-brain connectivity network. To accomplish
any given cognitive function, it is well understood that multiple brain
areas work together, rather than one area operating in isolation. Fur-

The connectome retains its individuality irrespective of the type of
cognitive involvement, and it can be measured even when not engaged
in any explicit task, known as the task-free, resting-state, or intrinsic
functional connectome (Buckner et al., 2013; Park and Friston, 2013;
Smith et al., 2015).

We do not, however, understand how the brain functionally reor-
ganizes from a task-free state to a specific cognitive state and from
one cognitive state to another. Comparing task-related and task-free
connectomes reveals both task-general components such as integra-
tive brain hubs involved in diverse tasks (Cole et al., 2013, 2014;
Gratton et al., 2016) as well as task-specific differences (Gonzalez-
Castillo et al., 2015; Shine et al., 2016). Moreover, task-induced dif-
ferences can be dominated by group and individual factors, as well as
their interactions (Gratton et al., 2018), rendering task effects to be
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Fig. 1. The brain state transformation model
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negligible. Despite the recent progress describing task-induced modu-
lations on brain activity, we still lack a way to model how the func-
tional connectome reorganizes between cognitive states. These previous
studies were descriptive and did not investigate if such task-induced dif-
ference can be predicted for unseen individuals. Other studies demon-
strated prediction of task-related brain activity patterns (Cole et al.,
2016; Tavor et al., 2016), but to date, no one has predicted task-related
connectomes.

To expand our understanding of how the brain supports human cog-
nitive functions at a system level, it would be ideal to develop a brain
reconfiguration model that can mathematically transform one state-
specific connectome to another. Here, “state” refers to the specific men-
tal or cognitive engagement state of the brain, such as the brain at rest
or during a working memory task. Such a model could, for instance, gen-
erate multiple individual task connectomes from a single task-free con-
nectome or, more generally, from another state connectome. Successful
modeling of brain network reconfigurations would suggest that cogni-
tive tasks modulate the brain connectome in a reliable and systematic
way, and would make the task-free connectome even more informative
and useful than previously possible.

Here, we introduce a novel connectome-to-connectome (C2C) state
transformation modeling framework that enables us to generate task-
specific connectomes from task-free scans (Fig. 1). We demonstrated
our framework using a functional magnetic resonance imaging (fMRI)
dataset from the Human Connectome Project (HCP, S1200 data release).
We constructed the C2C transformation model for each of cognitive
states defined by seven different tasks (Emotion, Gambling, Language,
Social, Relational, Motor, and Working Memory) in the HCP. We demon-
strated that the C2C model accurately generates task connectomes at an
individual level with high degree of specificity across the seven cogni-
tive states. In addition, the C2C model amplifies behaviorally relevant
information of the task-free connectome, thereby improving predictions
of individual behavior.

Notably, the C2C model requires many fewer data samples to out-
perform task-free connectomes alone. Thus, by improving the utility and
validity of resting-state fMRI analyses, the C2C approach alleviates the
cost and improves the power for studying brain-behavior associations.
This is essential for advancing the use of f{MRI for personalized, precision
measurements (He et al., 2020; Schulz et al., 2020).

Successful generation
of state-specific connectome if

Vstate j # s
corr(T$,T%) > max (corr'(T’,T’))

Validation 1: Similarity and task specificity of
generated task connectome
State identification by connectome fingerprinting

The C2C modeling framework also expands our understanding on
the functional mechanism of the large-scale brain network support-
ing diverse human cognition. The accurate generation of individual
task-specific connectomes by a quantitative model can formulate the
brain reorganization pattern in an explainable way. The presented
model consists of relatively simple linear functions that make the
model transparent and interpretable, quantifying the brain’s functional
reorganization in response to specific cognitive goals, and resulting
in individualized task-specific connectomes that improve behavioral
predictions.

2. Results

We constructed seven connectome-to-connectome state transforma-
tion models (Fig. 1). In each of seven cognitive tasks, the C2C model
defined subsystems in the resting-state and the cognitive state indepen-
dently (two separate principal component analyses [PCA]). Then, this
model learned a state transformation from the resting-state to the cog-
nitive state (partial least square [PLS] regression). C2C model training
was restricted to nine folds of data, and then validated in the left-out
one-fold testing sample (10-fold cross validation). We repeated 10-fold
validation 1000 times by shuffling subject-to-fold assignment.

2.1. Connectome-to-connectome (C2C) state transformation model
accurately generates task-specific connectomes from task-free connectomes

We validated the proposed framework first by testing whether con-
structed C2C models accurately generate task-specific connectomes. To
study this, we assessed the similarity of the model-generated task con-
nectomes with corresponding empirical task connectomes at the whole-
brain connectome level as well as at the edge level. At the connectome
level, the spatial pattern of the generated task connectomes was signifi-
cantly correlated with that of the empirical task connectomes (Fig. 2A).
The similarities of the generated connectomes with the corresponding
empirical connectomes ranged from r = 0.723 for the WM task state to
r = 0.643 for the Emotion task state.

Importantly, the similarity between the model-generated and em-
pirical task connectomes is significantly higher than the similarity be-
tween the task-free and the empirical task connectomes. We obtained
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Fig. 2. A) The empirical task connectome is more similar to the estimated task connectome than to the task-free connectome in all seven task states. In each task
column, a darker bar (right) represents similarity between the estimated and empirical task connectome, and a lighter bar (left) represents a similarity between the
empirical task-free and task connectome. Results are from 1000 iterations of 10-fold cross validation. Error bars represent standard error across 316 subjects. (R:
observed task-free (rest) connectome, 7: empirical task connectome, T generated task connectome). B) The distribution of difference between these two similarities
(similarity between estimated and empirical task connectomes — similarity between empirical task-free and task connectomes) across 1000 iterations. C) Mean square error
between estimated and empirical task connectomes is lower than that between observed task and task-free connectomes. Error bar represents standard error across
316 subjects. (R: observed task-free (rest) connectome, T: empirical task connectome, 7 generated task connectome).

the distribution of differences between these two similarity scores across
1000 iterations of 10-fold validation. The distribution was fully above
the null difference value of 0 (Fig. 2B), suggesting that the C2C models
generate more accurate task-specific connectomes. In addition, the gen-
erated Gambling, Language, Relational, Social, and Working Memory
connectomes were more similar to their corresponding empirical task
connectomes than to the observed task-free connectome (Figure S1).
This higher similarity of model-generated connectomes suggests that the
C2C models meaningfully transformed the task-free connectome to task-
specific states.

In order to evaluate the generation accuracy at the edge level, we
computed MSE between the model-generated and the empirical task
connectomes (Fig. 2C). We compared MSE of the model-generated con-
nectomes to MSE between empirical task-free and task connectomes.
The model-generated connectomes had a reduced MSE compared to the
MSE of the empirical task-free connectomes. These results held for all
seven task conditions, confirming that the C2C models accurately gener-
ated task-specific connectome matrices. In sum, we here demonstrated
the successful modeling of the connectome transformation between cog-
nitive states.

We confirmed that noise removal in individual connectomes, by PCA
alone, does not explain the increased connectome similarity by the C2C
models. The noise removal in the rest connectome rather decreases its
spatial similarity to the task connectome for every task state (Figure
S2A). This result indicates that the state transformation in the C2C mod-
els, using PLS regression, is essential to accurately estimate task-specific
connectomes.

We further tested how the amount of training data influences C2C
modeling. We repeated the same 1000 iterations of 10-fold cross-
validation by varying the number of subjects (from 50 to 300 subjects).
We observed that increasing the number of training subjects enabled
better C2C models, improving model accuracy in generating task con-
nectomes. Notably, even with only 45 training samples (nine training
folds of 50 subjects, Figure S2), the C2C models generated task connec-
tomes that were significantly more similar than the rest connectome to
the empirical task connectomes. The connectome generation accuracy
improved as the amount of data available to the model construction
increased.

2.2. C2C model generates functional connectomes specific to cognitive
states

It is important to demonstrate that the C2C models capture task-
specific transformations, not just a general transformation from task-
free to task-related states. Accordingly, we examined the specificity of
the C2C modeling across cognitive tests. We compared all seven model-
generated task connectomes with all seven empirical task connectomes.
In Fig. 3A, on-diagonal elements present within-task similarities of the
estimated and empirical connectome, and off-diagonal elements show
cross-task similarities between them. This similarity matrix was esti-
mated for each subject and then averaged to provide a group-level result.
For every task state, within-task similarity was higher than cross-task
similarities (Fig. 3A). For example, the model-generated connectome
for the WM task is more similar to the empirical WM task connectome
(r = 0.723) compared to the other empirical task connectomes.

To better visualize task specificity and the accuracy of the C2C mod-
els, we plotted the predicted contrast between task and rest connectomes
along with their empirical contrast (Figure S3). Figure S3 shows accu-
rate predictions of connectome differences across tasks for four repre-
sentative individuals. This visualization illustrates the explanatory pre-
cision of the model-generated connectomes and supports that the model
generates individual-specific connectomes rather than population-mean
connectomes.

We further assessed task specificity using a connectome fingerprint-
ing approach (Finn et al., 2015), “state fingerprinting”. In this approach,
the model-generated task connectome was compared with all seven em-
pirical task connectomes, and the task state of the empirical connec-
tome that exhibited the highest similarity was identified. For example,
if a connectome generated by a C2C model constructed for the WM task
matched best with the empirical WM task connectome, then this model
is considered task-specific. This identification procedure was applied to
every single subject for each task. Then for each task state we com-
puted an identification success rate by accumulating individual success
or failure (Figure 3B and S4). A high identification success rate indi-
cates high task specificity of the C2C modeling framework, and a low
rate indicates low task specificity (or task generality). The success rate
averaged across the seven tasks was 74%, significantly higher than the
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Fig. 3. A and B) Task specificity of the model-
generated task connectomes. A) Spatial similar-
ity between empirical and generated task con-
nectomes. On-diagonal elements show within-
task similarities of the generated and empirical
connectomes, and off-diagonal elements repre-
sent cross-task similarities. For all task states,
within-task similarity was higher than all cross-
task similarities. B) Task identification success
rate was assessed with a state fingerprinting ap-
proach. The generation of a task connectome is
considered successful if and only if the gener-

;6O o

o o
O X
At ;

\N; o8

Generated connectome

Similarity between
empirical connectomes

]

120

80

40

Empirical connectome

The number of subjects

S RO Y S SRt e )
I W 50 o €
S o & @
< R @ )
ot

Empirical connectome

chance level of 14.3% (Fig. 3B). The success rates of all seven task states
were significantly higher than chance level as well. Together with the
higher within-task similarity demonstrated earlier, the successful iden-
tification of task states using the model-generated task connectomes,
indicate that the C2C state transformation models provide reliably high
task specificity.

We then investigated if the high identification success rate of specific
tasks (here, for instance, language [yellow] and social [red] in Fig. 3B)
can be attributed to the similarity of the empirical task-free and the
task-specific connectomes (Fig. 3C). To do this, we analyzed to which
task-specific state the task-free connectome has the most similar pattern.
This analysis was again performed for every subject and then aggregated
to produce a group-level result. We found that in most cases (more than
one third of total subjects) the motor task connectome is the most simi-
lar to the task-free connectome (Fig. 3D). All other states but Relational
has similar numbers of subjects in which the task-free connectome is
the most similar to the target task. This result indicates that the suc-
cessful identification of cognitive states by the C2C models cannot be
explained by the observed similarity between task-free and specific task
states, and the C2C models accurately generate the connectome of cog-
nitive states by extracting appropriate transformation between cognitive
states.

2.3. C2C model amplifies behaviorally relevant information of individuals

Next, we investigated whether C2C models amplify information
unique to individuals, increasingly important for both clinical and re-
search applications. For this, we tested our models in predicting indi-
vidual intelligence with connectome-based predictive modeling (CPM,
Shen et al., 2017). Previous studies reported better behavioral predic-
tion by task-induced connectomes compared to task-free connectomes

& o e o e &
DU \ N S Y. L. X
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ated task connectome maximally resembles the
empirical connectome from the same task state
compared to those from the other task states.
State fingerprinting is more conservative than
the spatial similarity analysis shown in A. The
gray dashed line represents the chance level
of 14.3% (=100/7). Error bar represents stan-
dard deviation from 1000 iterations. C) Spatial
similarity of empirical connectomes between
one task-free and seven task-specific states. On-
diagonal elements show within-task similari-
ties of the empirical connectomes (r = 1), and
off-diagonal elements represent cross-task sim-
ilarities. D) Classification of empirical task-free
connectomes into one of seven task states. The
classification was performed in each subject
and then individual results were accumulated
for the group-level results shown in the bar
graph. The y axis represents the number of sub-
jects whose task-free connectome was classified
as each task-specific connectome.
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(e.g., Green et al., 2018; Yoo et al., 2018). In this point, we asked
if generating task-specific connectomes improves accuracy of fluid in-
telligence predictions. The C2C modeling methods would not improve
behavioral predictions if this modeling simply adds edge-wise group-
averaged differences between the empirical task-free and task-specific
states during state transformation. Since CPM is based on a linear re-
gression, adding the same value to all input across subjects would not
change CPM prediction performance. However, if the generated con-
nectome better predicts individual behavior compared to the empirical
task-free connectome, this will indicate that the C2C models would ex-
tract a hidden reliable pattern of connectome reorganization from task-
free state to task-specific state, to generate connectomes of task-specific
states.

The behavioral predictive power of the model-generated task con-
nectomes was significantly higher than the task-free connectomes. In
WM task states, the predictive power of the model-generated connec-
tome was r = 0.180, and the power of the task-free connectome was
r=0.076 (p < 0.01) (Fig. 4A, S5A, and S6). This result held for all other
task states (all p’s < 0.01), demonstrating that model-generated task-
specific connectomes have stronger predictive power than the empirical
task-free connectomes. Thus, in the absence of task-involved data, the
C2C models can transform task-free data to provide more accurate be-
havioral predictions.

We also directly compared the similarity between the model-
generated and the empirical task connectomes within individuals rel-
ative to across individuals. We performed this comparison for all task
states and found that within-individual similarity is higher than cross-
individual similarity for every task (Figure S7). Higher within-individual
similarity and better intelligence prediction suggests that the C2C mod-
els generate task connectomes in a way that not only preserves but am-
plifies individual uniqueness.
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2.4. C2C models decrease the amount of data needed to predict behavior

To investigate the reliability of C2C-based behavior prediction
as a function of sample size, we ran the same 10-fold validation
by varying the number of subjects from 50 to 300. C2C model-
generated task connectomes, averaged across seven cognitive states,
significantly increased prediction accuracy compared to the empiri-
cal task-free connectomes when using 200 subjects or more (p<0.05,
Fig. 5). For each state, the model-generated connectomes significantly
increased accuracy compared to the task-free connectomes from 200
(Language, Relational and Working Memory) or 250 subjects (Emo-
tion, Gambling, Motor, and Social) (p<0.05, Figure S8A). The C2C
models gradually improved with more subjects for all tasks, and
their mean accuracies were numerically higher than the accuracy
of empirical task-free connectomes consistently from 100 subjects
(Figure S8A).

We then estimated how many samples are required in C2C modeling
to outperform the empirical task-free connectomes of 300 subjects. Re-
markably, the C2C models, on average across seven tasks, required only
100 subjects to achieve a prediction accuracy similar to that obtained

Neurolmage 257 (2022) 119279

Fig. 4. Individual behavior prediction with generated task con-
nectomes. A) Predictive power for individual differences in fluid
intelligence by the generated task connectomes (colored) in com-
parison to the observed task-free connectome (black). Error bar
represents standard deviation from 1000 iterations. The predictive
power of the empirical task connectomes that can be considered
practical ceilings is represented in Figure S6. B) Behavioral predic-
tion with generated task connectomes of 27 subjects who did not
have seven complete task scans. The left-most black bar shows the
predictive power of the observed task-free connectome as a base-
line. Prediction performance was assessed by correlating predicted
scores with observed scores.

from the empirical task-free connectomes from 300 subjects (Fig. 5). The
number of subjects at which the C2C model-generated task connectomes
overtook the empirical task-free connectomes of 300 subjects was 93 on
average (Figure S8B). The estimated numbers needed to match perfor-
mance for the seven tasks ranged between 79 and 102.

2.5. C2C model can generate task-specific connectome of individuals who
have never undergone task fMRI

We performed additional validation of the C2C model in 27 sub-
jects who were excluded in the main analysis because they were miss-
ing some task scans. Since this sample did not have the empirical task
fMRI, we could not assess the accuracy of C2C models’ generating in-
dividual connectomes. It was only possible to compare the behavioral
predictive power of the model-generated connectome with that of the
empirical task-free connectome. We replicated the CPM result in this
sample by revealing that, compared to the task-free connectome, the
model-generated task connectomes provided better predictions of indi-
vidual fluid intelligence scores (Fig. 4B and S5B).
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Fig. 5. C2C modeling enabled accurate behavioral predictions using only a third
of subjects compared to when using the empirical task-free data without trans-
formations. The C2C models required only 100 subjects, on average, to out-
perform the predictions using the empirical task-free connectomes of 300 sub-
jects. Error bars represent standard deviation from seven tasks (for generated
task connectomes) or standard deviation from 1000 iterations (for empirical
rest connectome).

2.6. Understanding the large-scale brain reorganization between cognitive
states in a qualitative and quantitative way

We next sought to understand the systematic reorganization of the
whole brain connectome across cognitive states using the connectome
transformation framework. The constructed and validated C2C models
provide a window that allows us to quantitatively characterize con-
nectome reorganization between cognitive states. We hoped to pro-
vide a way to expand our understanding on the functional mechanism
of the large-scale brain network in supporting diverse human cogni-
tion. We first compared subsystems (here, PCA components) of the
whole-brain connectome between cognitive states, and then investi-
gated composition of task-specific subsystems relative to task-free state
subsystems.

Fig. 6, S9 and S10 visualize the first 25 principal components of the
task-free state. Here, all 268 brain nodes were divided into eight canon-
ical networks (1: medial frontal, 2: frontoparietal, 3: default mode, 4:
subcortical/cerebellum, 5: motor, 6: visual I, 7: visual II, 8: visual as-
sociation networks, from Finn et al., 2015). The first component corre-
sponds to the group mean of the whole-brain connectome. This compo-
nent principally defines within-network connectivity of eight networks,
consistent with previous observations, such as the resting-state networks
extracted by independent component analysis on fMRI time-series or
the modular structure revealed by graph theoretical approaches on the
functional connectome. The following components revealed more dis-
tributed connectivity across networks, primarily defining cross-network
connectivity. We compared all task-free components with task-specific
components of each task state. In doing so, we sorted the order of task-
specific components to be consistent with the task-free components. In
other words, reordered i th task-specific component has the spatial dis-
tribution maximally similar to the i th task-free component, establishing
a correspondence (ideally, one-to-one) of components between cogni-
tive states. We are aware of that multiple task-free components could be
combined to produce one task-specific component or that one task-free
component could be divided into multiple components in task-specific
states. We, however, stuck to building this correspondence for simplic-
ity in identifying and comparing subsystems from different cognitive
states.

Neurolmage 257 (2022) 119279

2.7. Task-general components relative to task-free state

Figure S11 presents the similarity of the first ten components from
each state with the first ten task-free components. Across all seven task-
specific states, the first two components have apparently high similarity
to the corresponding task-free components. The first component repre-
sents group-common state-general components (the group-mean struc-
ture as described earlier). It should be noted that the fact that a com-
ponent is common to group does not necessarily imply that its weight
is the same across subjects. Individual subjects could still have varying
weights for group-common components.

We sought to quantify the large-scale reorganization with cognitive
states. In the C2C state transformation, every task-specific component is
described by combination of task-free components and the combination
is defined and represented by PLS coefficients in C2C modeling. Hence,
we compared the coefficients of the i th component between seven task-
specific states, for all i from I to 100, to uncover task-general and task-
specific reorganization (Fig. 7). As can be expected, the first compo-
nent of each task-specific states has distinctively strongest weights on
the first task-free component. In contrast, this component has relatively
negligible weights on the other task-free components. This pattern of
coefficients distribution indicates that the first component is preserved
in cognitive states transformation from task-free state, and thereby can
be considered a state-general component across all task-specific states
as well as task-free state.

Importantly, we also found that there are other components (for in-
stance, component 2, 3, 6, 7, and 8) that change consistently across tasks
but do not solely correspond to a single task-free component (Fig. 8A).
That being said, these components are similar across task-specific states
and exhibit the domain-general difference relative to the corresponding
task-free state. These components had significantly similar distribution
of weights on task-free components (Fig. 7). Noteworthy, component
6 primarily represents default mode network’s within-network con-
nectivity as well as connectivity with other networks (Figure 6 and
$10). The component 6 also defines medial frontal and frontoparietal
connectivity in a moderate degree. The component 6 has significantly
similar beta coefficient between almost every pair of seven cognitive
states (Figure 8AB). While this component has the strongest weight on
the 6-th component of the task-free state for all seven states, it also has
comparable degree of weights on different components (for instance,
task-free component 8 and 9 with the opposite direction in Fig. 7).
Other components (2, 3, 7 and 8) also exhibited relative task generality,
although there are not fully general across all tasks (Figure 8AB).
Among these networks, component 2 represents connectivity between
medial frontal and motor networks as well as their connectivity to
frontoparietal and subcortical/cerebellum networks (Fig. 6 and S10).
In addition, component 7 mainly represents the subcortical/cerebellum
connectivity, and component 8 has the frontoparietal connectivity and,
in a lesser degree, subcortical/cerebellum connectivity (Fig. 6 and S10).

2.8. The functional brain connectome exhibits task-specific components as
well

Although the components described above showed task generality,
the other components (4, 5, 9 and later) exhibited task specificity. These
components had low similarity (r ~< 0.2) between task-specific states
in their coefficients on task-free components (Fig. 8AB). Among them,
component 9, for instance, represents connectivity of frontoparietal
network and connectivity of the default mode network, and component
11 primarily represents connectivity of medial frontal network (Fig. 6
and S10). These components also did not have a distinctive weight
on any task-free component, suggesting that these components are
appeared from a distinct combination of multiple task-free components
(Fig. 7). This observation suggests that some functional components,
especially connectivity of frontal and parietal brain areas, change in
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Fig. 6. The first 25 task-free components from PCA. All components were thresholded (Z > 5.7*SD) at the edge-level first and then presented with eight canonical
networks. The first component corresponds to the group mean of the whole brain connectome, and principally defines within-network connectivity of eight networks.
The following components revealed more distributed connectivity across networks, primarily defining cross-network connectivity. Blank (by white color) indicates

that all edges between two networks have subthreshold PCA weights.

different ways across different cognitive states; in other words, these
components are task-specific.

Note that brain networks or regions can be involved in multiple
components. What defines a component is not the participant networks
themselves, but rather the pattern of interaction between networks. For
example, frontoparietal and default mode networks seem to play the
main role in components 6 and 9, which were considered task-general
and task-specific, respectively. The difference is the pattern of their con-
nectivity with other networks. Only component 9 consisted of the oppo-
site pattern of connectivity between the two networks. Moreover, com-
ponent 6 additionally included the connectivity of the medial frontal
network.

3. Discussion

Here, we presented a new connectome-to-connectome (C2C) state
transformation modeling approach that generates individual task-
specific connectomes. Rather than relying on regional response patterns
to cognitive demands, the proposed model generates inter-regional in-
teraction patterns, the functional connectome, for each subject across a
wide range of cognitive domains, solely from the task-free connectome.
The C2C state transformation model demonstrates both a high degree of
task specificity across seven task states and individualization that closely
resembles the empirical task connectomes from individuals. Moreover,
the model amplifies behaviorally relevant individual differences in task-
free connectivity patterns, thereby improving prediction of individual
differences in behavior.

The principal aim of this study was to develop a computational
model to understand the connectome reorganization between cognitive
states at the individual level. The C2C modeling in this study consists of
relatively simple linear functions, principal component analysis and par-
tial least square regression, for estimating connectome reorganization.
Other studies have revealed a high degree of functional connectome sim-
ilarity between different cognitive states, with integrative hubs playing
a role across cognitive domains as well as task-specific alterations of
functional connectome (Cole et al., 2013, 2014; Gonzalez-Castillo et al.,
2015; Gratton et al., 2016, 2018; Shine et al., 2016; Shirer et al., 2012).
These studies have contributed to the literature to describe the large-
scale commonalities and differences in the functional connectomes be-
tween various cognitive states.

However, the field lacks a computational approach to character-
ize and estimate context-modulated functional connectivity. To address
this, we designed a C2C model that can generate individual state-
specific connectomes for seven different cognitive tasks. Furthermore,
this model is transparent and interpretable, so that we can scrutinize
model-estimated reorganization to infer brain reorganization. In this
study, we defined task-specific functional connectivity as synchronized
fluctuations between brain regions during task performance. The task-
specific functional connectivity, however, could be further disassembled
into task-induced “true” modulation in connectivity, task-independent
connectivity on which task engagement induces modulation, and event-
related simultaneous activations of brain regions. “Intrinsic functional
connectivity” closely resembles task-free connectivity, altered by engag-
ing in a cognitive task to yield extrinsic or task-evoked connectivity
(Cole et al., 2014). Furthermore, task coactivations induce spurious, but
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Fig. 7. PLS coefficients presenting reorganization from task-free components (1-10 in each cell) to task-specific components (1-25, plotted across the figure). These
coefficients describe composition of task-specific components. For example, the first task-specific component has the strongest weight on the first task-free component,
whereas they have relatively negligible weights on the other task-free components. This suggests the first task-specific components as state-general components across
tasks and task-free states. The second task-specific component has similarly the strongest weight on the corresponding second task-free component, however it also
has relatively strong weight on another task-free components. For example, the second component of relational and social task states has strong negative weights on
the eighth and ninth task-free component. This suggests that the second task-specific components are more or less state-general on a continuum, but not as much as
the first component. In this figure, coefficients for only the first ten task-free components were visualized.

systematic inflation in connectivity (Cole et al., 2019). It is important
for C2C modeling to generate task-evoked connectivity, not task-related
coactivation between brain regions. Task coactivation might largely re-
late to the experimental task design to which brain regions response
in common, not the cognitive processes required in the task. In this
study, we demonstrated that the C2C model-generated task-specific con-
nectomes better predict individual intelligence compared to the task-
free data. Our observation of improved behavioral prediction indicates
that the C2C modeling predicts task-evoked connectivity. Greene et al.,
2020 showed that task coactivation cannot predict intelligence, whereas
task-dependent and task-independent connectome contribute to accu-
rate prediction (Greene et al., 2020). That said, if the C2C model only
predicted the pattern of task-coactivation on the top of the intrinsic con-
nectivity, then the model-generated connectome would have predicted
individual behaviors with accuracy similar to the empirical task-free
connectome or lower. This means that the presented C2C models truly
predict (at least a portion of) task-induced modulation in the connec-
tome. It should be noted, however, that these observations do not nec-
essarily indicate that the C2C model generates task-evoked connectiv-
ity exclusively, as task-related connectomes generated from C2C state
transformations contain the effect of task coactivation as well.
Predicting task connectomes from task-free connectomes should
have important implications for basic and clinical research. First of all,
the C2C approach takes advantage of task-free and task data, provid-

ing practical benefits. Task-free scans are easier to collect consistently
across studies and sites than task scans. For example, patient groups or
populations may have difficulty performing certain tasks (Pujol et al.,
1998). Instead, task-free scans can be acquired because of their simplic-
ity and minimal demands (Bullmore, 2012). Although task-free scan-
ning offers the ease of acquisition, it is limited for characterizing in-
dividual traits and behaviors because participants can engage in un-
constrained, subjective mind-wandering during scanning, making men-
tal states more variable from scan to scan. Higher consistency across
subjects and sessions can be obtained by requiring subjects to perform
a common, explicit task, or to watch naturalistic movies (Finn et al.,
2017; Vanderwal et al., 2017). In a task-engaged setting, participants
are supposed to employ the same, or at least similar, cognitive func-
tions to achieve a common task goal. Thus, task-induced consistency
in the brain would help to better construct a brain-behavior associa-
tion (Greene et al., 2018; Jiang et al., 2020; Tomasi and Volkow, 2020;
Yoo et al., 2018). Through the additional validation, we tested the con-
structed C2C models in the novel set of subjects who have not completed
task scanning. In these samples, the model-generated task connectomes
outperformed the empirical task-free connectome in predicting individ-
ual intelligence. Thus, the proposed C2C modeling presents the strengths
of task-free and task-specific data.

Another major advantage for basic and clinical research is that
C2C significantly increases analysis power, requiring much fewer
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subjects to achieve the same prediction results. C2C-generated task
data surpassed the predictive power of empirical task-free data, based
on much fewer subjects, as low as a third in this study: 100 subjects
for the generated task connectomes vs. 300 subjects for the empirical
rest connectomes. In the analyzed HCP fMRI dataset, task fMRI scans
had shorter durations (176 ~ 405 TRs x 2 runs) than task-free scans
(1200 TRs x 4 runs). Thus, even after considering the shorter amount
of task fMRI data, the C2C approach clearly lessens the cost and effort
of collecting data for both subject recruitment and fMRI scanning. As

a hypothetical cost analysis, if the expense for collecting fMRI data
from one subject is $2000, then the C2C approach achieves the same
prediction results with $200,000 vs. $600,000. As another practical
advantage, C2C modeling can increase the validity and utility of
analyses using large-scale data sets such as the Human Connectome
Project (Essen et al., 2013; Glasser et al., 2016) or the Adolescent Brain
Cognitive Development Project (Casey et al., 2018).

Lastly, our C2C transformation models can inform how the brain
reconfigures to support our cognitive and mental functions across tasks.
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Specifically, our method can help dissociate domain-general networks
that play a role in diverse tasks from task-specific networks that are
exclusively involved in different tasks.

While the current study contributes to the field with a keystone to
study connectome reorganization, it needs further elaboration in fu-
ture studies in several respects. The currently demonstrated modeling
starts from several assumptions, such as one-to-one correspondence be-
tween cognitive states and the constant number of subsystems across
states. While these assumptions help simplifying model construction as
well as interpretation, they may differ from the way in which the hu-
man brain reorganizes. The brain network exhibits a hierarchical struc-
ture and modular organization (Meunier et al., 2010; Sporns and Bet-
zel, 2016). Moreover, multiple subnetworks could be dynamically com-
bined into one larger subnetwork, or vice versa, during cognitive en-
gagement (Shine et al., 2016; J.M. 2019). Of future interest would be to
incorporate network integration and segregation in the C2C framework.
Procedures defining subsystems or their relation between states could
be overlooked as parameter optimization in regard to machine learn-
ing. We should, however, keep in mind that this framework is to model
the human brain, not to build the best working machine. In this sense,
it could deepen our understanding of the cognitive brain by incorporat-
ing biologically-driven settings and constraints into state transformation
modeling.

4. Materials and methods
4.1. MR data — human connectome project S1200

We obtained minimally pre-processed MRI data from the $1200 re-
lease of the Human Connectome Project (HCP) (Essen et al., 2013;
Glasser et al., 2013). This dataset contains nine fMRI conditions per
subject including seven tasks (emotion, gambling, language, social, mo-
tor, working memory [WM], and relational) and two separate rest con-
ditions during two-day visits. Each condition involves two runs with
opposite phase encoding directions (LR and RL). All fMRI data were
acquired on a 3 T Siemens Skyra using a slice-accelerated, multiband,
gradient-echo, echo planar imaging (EPI) sequence (TR = 720 ms,
TE = 33.1 ms, flip angle = 52°, resolution = 2.0mm3, multiband fac-
tor = 8). Detailed information on MR imaging parameters and pre-
processing procedure have been published elsewhere (Barch et al.,
2013; Smith et al., 2013; Ugurbil et al., 2013). The experimental pro-
tocol was approved by the Institutional Review Board at Washington
University in St. Louis, and informed consent was obtained from all
participants.

The main analysis in this study was limited to 316 participants aged
22-36 years (mean 28.5 years, 154 females). Out of 1206 subjects,
we first selected 561 individuals who completed all nine fMRI scans
(888/1206), exhibited low head motion in all fMRI runs (<3 mm trans-
lation, <3° rotation, and <0.15 mm mean frame-to-frame displacement)
(565/888), and had a behavioral fluid intelligence score (561/565). The
final pool of subjects was composed of 316 subjects who were unrelated
to any of the other 316 subjects based on their family structure verified
with genetic information (316/561). In this control of relatedness, we
randomly selected a single subject from each family and excluded all
the other family members.

We performed additional preprocessing steps on the minimally pre-
processed fMRI scans. The first 15 vol in each run were discarded. Nui-
sance covariates were regressed from each run using custom scripts
in MATLAB R2016b. Nuisance covariates included 24 motion-related
parameters (6 translational and rotational motions, 6 derivatives, and
their squares), three mean tissue signals (global, white matter and cere-
brospinal fluid), and linear and quadratic trends. Frequency filtering was
not applied because task-related brain signals may present at higher fre-
quencies than relatively slow resting fluctuations.
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4.2. Construction of the whole-brain functional connectome

A set of brain nodes covering the whole brain was defined with a
268-parcel functional atlas (Shen et al., 2013). An average time-series
was extracted for each node from the preprocessed data. Pearson’s corre-
lation between the mean time-series of every pair of 268 nodes was cal-
culated as functional connectivity, providing a 268-by-268 whole-brain
connectome (35,778 unique edges). The same procedure was completed
for every run and every state (i.e., task). The final rest connectome was
constructed by averaging four rest-run connectomes (2 runs x 2 ses-
sions). The final task connectome was constructed by averaging two
task-run connectomes for each task.

4.3. Connectome-To-Connectome (C2C) state transformation modeling

The presented C2C state transformation modeling is a predictive
model that can generate task-specific connectomes of individuals. In
the current modeling, generation of task-specific connectomes is based
solely on the whole-brain task-free connectome of individuals. Hence,
this procedure provides a state transformation of the brain functional
connectome.

A strength of the C2C state transformation model is that it is sim-
ple and transparent, which in turn, makes the model interpretable
(Bzdok and Ioannidis, 2019). We sought to have this model as simple
and interpretable as possible so that we can understand the large-scale
mechanism and anatomy of the task transformations. The C2C model
works in three steps. The first step is to extract task-free subsystems from
the whole-brain task-free connectome of individuals. The second step is
to transform task-free subsystems to estimate task-specific subsystems.
The third step is to construct whole-brain task-specific connectomes.
Importantly, C2C modeling generates the whole-brain connectome of
targeted cognitive states at a single subject level.

4.4. Model construction

We constructed seven C2C models for all seven task states included
in the HCP dataset. We constructed and validated models using 10-fold
cross validation. In particular, we constructed C2C models using a train-
ing set (90%) of all available subjects and left out 10% as a testing set
in which we validated the models. Detailed information on the 10-fold
approach is provided in a designated section 10-fold Cross Validation.

The proposed C2C state transformation model was constructed using
two statistical methods, principal component analysis (PCA) and partial
least square (PLS) regression. PCA was first employed to define and ex-
tract state-specific subsystems and their scores for the task-free state
and task-evoked state, separately. In constructing the task-free to work-
ing memory (WM) task state transformation, for example, we performed
one PCA using the task-free connectomes of individuals in the training
set (1). This corresponds to the first step of the C2C model described
in the previous section. We also performed another PCA separately us-
ing these same individuals’ WM task connectomes (2). This second PCA
provides a reconstruction the whole-brain task connectome from the
generated task subsystems, the third step of the C2C model. Then, PLS
regression was employed to estimate the transformation of subsystems
from the task-free state to the WM task state (3). The PCA-extracted
subsystem scores of task-free and WM task states were put into PLS re-
gression. We constructed one C2C model for each task state of the HCP
dataset, producing a total of seven C2C task models.
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R is the rest connectome, WM is the working memory connectome,
W and S are PCA component coefficients and scores, and f is the PLS
regression coefficient.

To apply the C2C model to new task-free connectome data from in-
dividuals in the test set, as a first step, the model extracts individual
scores of task-free subsystems that were predefined by the first PCA
in model construction (4). In the second step, the model estimates in-
dividual scores of task-specific subsystems from task-free scores using
pretrained PLS regression (5). Then finally, the model constructs the
whole-brain task-specific connectome using the estimated task-specific
scores and reconstruction that was also predefined by the second PCA
in model construction (6).

R _ R \T

Stext - Rf@Sf * (I/I/train) (4)
SWM _ &R wM

Stest - Stest * ﬁrrain ®
WM, =SVM o wWM (©6)

test train

The numbers of components in PCA and PLS were set to 100 and
10, respectively, based on previous studies reporting stable reconstruc-
tion of individual connectomes and accurate behavior prediction from
between 50 and 150 components with a peak around 80 to 100 com-
ponents (Amico and Gorii, 2018; Sripada et al., 2019). The C2C models
with different numbers of components (50~200) produced similar re-
sults in this study.

4.5. 10-Fold cross validation

We validated the C2C state transformation models using 10-fold
cross validation. The C2C models were trained using nine folds of data
(284 or 285 subjects) and tested on the one left-out fold (out-of-sample
validation). Once we constructed the seven C2C models for the seven
task states, we applied these C2C models to the task-free connectome
in the left-out fold (31 or 32 subjects), generating seven (transformed)
task connectomes, one from each model. Each of the 10 folds was itera-
tively left out as a test set in 10-fold cross-validation. We repeated this
10-fold cross-validation 1000 times with randomizing subject-to-fold
assignment to compute reliable statistics, demonstrating that the pre-
sented results are not dependent on specific data partitions. The models’
generated task connectomes were validated in multiple ways, described
in the following sections.

4.6. Similarity of generated task connectomes to empirical task
connectomes

We first investigated whether the generated task connectome resem-
bles the empirical task connectome more than the observed task-free
connectome. To measure the similarity of the two connectomes, we com-
puted the spatial correlation and mean square error (MSE) between the
generated and empirical task connectome. The correlation describes the
predictive accuracy of spatial patterns at the connectome level. The MSE
describes the predictive accuracy of individual connectivity strength on
average. The similarity was assessed in individuals and averaged across
316 individuals, and averaged across 1000 iterations for each task.

4.7. Task specificity of generated task connectomes

Next, we examined the task specificity of generated task connec-
tomes in two ways. First, we compared the intra-state similarity between
generated and empirical task connectomes with the inter-state similarity
between them. Connectome similarity by spatial correlation was mea-
sured in individuals and averaged across 316 individuals, and averaged
across 1000 iterations of the cross-validation.
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Secondly, we tested task specificity with a more conservative ap-
proach, connectome-based fingerprinting (Finn et al., 2015). Finger-
printing analysis aims to identify a participant from a group of individ-
uals based on their unique functional connectivity pattern. We modified
this approach in this study to test among states, not among individuals.
State fingerprinting analysis requires two functional connectomes from
each state: one (generated task connectome) to serve as the ‘target’ and
the other (empirical task connectome) to serve as the ‘database’. Using
the WM task as an example, the empirical WM connectome is considered
successfully identified if the generated WM connectome maximally re-
sembles the empirical WM connectome compared to the other six tasks’
empirical connectomes. In general, the empirical connectome of cogni-
tive state s is considered successfully identified if

Similarity(fY,Ty) > Similarity(f"x, Tl-), Vstate i # s

where T, is the generated task connectome of state s, and 7}, is the empir-
ical task connectome of state s. The similarity between two connectomes
is measured by spatial correlation.

Then the measure of task specificity, identification success rate of a
task, was measured as follows:

Identification success rate (%)
T he number of subjects whose target task state is succes fully identified y

100
T he total number of subjects (= 316)

Success rate was computed for each task state in each iteration of
10-fold cross-validation, and then averaged across 1000 iterations to
provide reliable statistics. A high identification success rate shows that
the C2C modeling predicts task connectomes with a high degree of speci-
ficity.

We further tested if a high identification success rate of a certain
task state is due to the high similarity of the empirical task-free connec-
tome to the specific task connectome. To test this possibility, we related
each individual’s task-free connectome to their task-state connectomes.
Specifically, we computed the spatial correlation of the task-free con-
nectome with each of the seven empirical task connectomes. Among the
seven states, we tracked the task state of the connectome that was most
similar to the empirical task connectome. After completing this analysis
for all participants (n = 316), we counted the number of participants for
each state, providing a group-averaged similarity of task connectomes
with the task-free connectome.

4.8. Predictive power of generated task connectomes: individual difference
in fluid intelligence

We next tested whether, compared to the empirical task-free connec-
tome, the task connectomes generated by the C2C state transformation
model had amplified behaviorally relevant information. We used data-
driven connectome-based predictive modeling (CPM, Finn et al., 2015;
Shen et al., 2017) to assess predictive power for individual fluid in-
telligence of the model-generated connectome relative to the empirical
task-free connectome.

The CPM procedure was in principle the same as in our previous
work (Yoo et al., 2018; K. 2019). The only difference from our previ-
ous studies is that here we trained the CPM model along with the C2C
model. We trained a CPM on the same 10-fold cross-validation loops in
which the C2C state transformation models were trained. Thus, training
samples, the empirical task and rest connectomes of the training set, for
C2C modeling were also used to train the CPM. Once the two models
were constructed, the C2C model first generated the task-specific con-
nectome as described previously, and then the CPM predicted individual
intelligence using the C2C-generated task connectome in the same left-
out testing samples.

We assessed the predictive power of the generated task con-
nectomes i) by correlating individual predicted intelligence scores
with observed intelligence scores and ii) by generating prediction

2 _ MSE(predicted,observed) . P g 2
R* = T MSEGobsorved) (Scheinost et al., 2019). The prediction R
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represents a model’s numerical accuracy in predicting an individual’s
actual behavior (here, fluid intelligence) score relative to simply guess-
ing their mean: positive values indicate the model prediction is better
than that achieved by guessing mean for every testing sample. Hence,
the prediction R? complements the correlation-based model evaluation
which measures the model accuracy in predicting individual differences
in intelligence, and it is recommended to report both measures to fur-
ther inform a potential practical utility. Behavioral predictions were also
repeated with 1000 iterations of 10-fold validation to provide reliable
statistics. The predictive power of the task-free connectome was also
assessed as a control.

4.9. Varying the sample size used for C2C modeling

We varied the numbers of subjects in the C2C and CPM models using
additional 10-fold validation analyses. We tested a range from 50 to
300 subjects and repeated 10-fold cross-validation analyses 1000 times
by randomly sampling from the 316 subject pool. All steps in C2C and
CPM modeling and performance estimation were the same as the main
analysis, except for the number of subjects used in model construction
and validation.

4.10. Additional validation

We performed additional validation of the proposed C2C state trans-
formation models in a set of HCP participants who were excluded in our
main analysis because their task MR scans were incomplete. We again
only used unrelated subjects (n = 27) to rule out potential bias induced
by family structure. In this validation, the C2C models for each task were
trained with the entire set of 316 individuals used in our main analy-
sis. The trained models were then applied to the task-free connectome
of 27 new participants whose task connectomes were never analyzed
in this study. The C2C models generated task-specific connectomes for
each of these individuals. Since these 27 participants did not have com-
plete task data, we could not assess the similarity or task specificity of
generated task connectomes. We only examined whether the generated
task connectomes better predicted individual intelligence compared to
their task-free connectome.

4.11. Subsystems of the whole-brain connectome

As described in Model Construction, PCA defines subsystems (i.e.,
principal components) in each task state. To compare the subsystems
between different cognitive states, we first sorted the subsystems of task
states to be consistent with the order of task-free subsystems. For sim-
plicity, we assumed a one-to-one correspondence of subsystems between
states. As an example for the WM task, we computed the spatial similar-
ity of all WM task subsystems with the first task-free subsystem and then
assigned the WM task subsystem that yielded the highest similarity to be
the first subsystem of the WM task state. We next computed the spatial
similarity of subsequent WM task subsystems with the second task-free
subsystem and, similarly, assigned a WM task subsystem that yielded
the highest similarity as the second. We repeated this procedure until
all WM task subsystems were assigned. We ran the same sorting for all
the other task states as well. This procedure allows to build, ideally, a
one-to-one correspondence of subsystems between the eight task states
(one task-free and seven task-specific).

4.12. Understanding the functional reorganization of the brain connectome

We sought to reveal the relationship of task-specific states to task-
free states by asking how task-free principal components reorganize
into task-specific principal components. To study the reorganization pat-
terns, we investigated the coefficients of PLS regression in the C2C mod-
els. Here, PLS coefficients represent a combination of task-free compo-
nents in generating task components. Furthermore, they can be used to
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ask how state-specific vs. state-general the task-related components are.
We first used a sorting procedure to match components across seven task
states and rest, and then we compared the PLS coefficients of the com-
ponents across these states. We assessed the similarity of coefficients
between components by correlating their coefficients. High correlations
indicate that the components of different states emerge from a similar
reorganization of task-free components. In other words, high correla-
tions demonstrate that, across different cognitive states, corresponding
functional connectivity pattern principal components change from rest
to task in similar ways. Along a continuum of similarity, high similarity
across most pairs of task states would suggest that the subsystem is task-
general, and low or variable similarity would suggest that a subsystem
is task-specific.
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