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Attention has a ubiquitous role in perception and cognition1. 
We are endlessly exposed to all kinds of overflowing sen-
sory information, and the ability to deploy attention over 

space and to sustain it over time is crucial in everyday life. We have, 
however, limited cognitive capacity, and therefore must selectively 
process information most relevant to our actions. Attentiveness 
explains behavioural performance fluctuations both within and 
across individuals2, and attention deficits are common in mental ill-
ness and symptomatic of brain damage3–5.

Despite this central importance of attention, clinicians and 
researchers lack a standardized way to measure a person’s over-
all attentional functioning. Although no mental process can be 
reduced to a single number, both research and clinical practice 
can benefit from having standardized and quantifiable measures to 
facilitate comparison across and within individuals6,7. For example, 
intelligence research and education practice benefit from the abil-
ity to measure g factor, as a general index of fluid intelligence8. A 
comparable index is lacking for attention, despite its pervasive role 
in modulating most perceptual and cognitive processes.

The fact that there are so many different tasks to examine atten-
tion functioning reflects that attention is not a unitary construct but 
rather multi-faceted1. People’s attentional abilities may vary along 
the multiple dimensions of attention. These differences in atten-
tional functions amongst individuals can be measured by extensive 
behavioural tasks. However, an overload of tasks not only requires 
a substantial amount of time but also may introduce fatigue, which 
may affect task performance. Therefore, it is important to under-
stand what is common or unique among the different attention 
tasks and try to predict them with minimal testing.

The literature lacks a systematic investigation of the general and 
specific factors of attentional processes and their underlying neural 
architectures across an array of tasks. One behavioural study exam-
ined a set of cognitive tasks known to employ executive functions, 
including attention and working memory. This study showed that the 
nine tested tasks are not completely independent but share common 
and separable components9. Another behavioural study also revealed 

a general factor that is shared by multiple attention task paradigms 
as well as specialized factors that are unique to specific tasks where 
the shared component explained substantial variance in performance 
across most of the tasks10. However, this common (general) attention 
factor cannot be derived from an individual task, and the behavioural 
nature of this study did not allow exploration of the underlying neu-
ral mechanisms across tasks. The frontal and parietal cortices are 
well known to control attention11,12, but most imaging studies have 
not systematically compared their engagement across multiple atten-
tion tasks. In addition, only recently have studies begun to predict 
individual attentional behaviours from brain scans13–16.

Here we seek to develop a brain-based, standardized attention 
profile measure that can quantify a person’s performance across the 
different attentional demands. We adopted a connectome-based 
predictive modelling approach (CPM) that develops computational 
models to accurately predict an unseen, novel individual’s trait and 
behaviour solely from their brain activity17. This is based on the 
whole-brain pattern of functional connectivity (synchronized fluc-
tuation of time-series signals from distributed brain regions), which 
is unique to each individual and predictive of their behaviours18–21. 
CPM accurately predicts a variety of individual behaviours and 
traits, including intelligence18,22, attention14,23–25, memory26–28, lan-
guage29, creativity30 and personalities31–33.

One of the earliest CPM studies introduced a model to predict 
an individual’s ability to sustain attention over time (saCPM)14, 
demonstrating that the brain’s functional organization is predic-
tive of behavioural performance in the gradual-onset continuous 
performance task (gradCPT)34. In addition, the saCPM generalized 
to predict individual differences in the stop-signal task23 and the 
Attention Network Task24,35, and symptom severity differences in 
patients with attention deficit hyperactivity disorder (ADHD)14,36. 
Sustained attention, however, is just one aspect of human attention1, 
and we still need a general measure that can inform a single indi-
vidual’s attentional ability across multiple tasks.

For a comprehensive assessment of attention, we collected 
original behavioural and functional magnetic resonance imaging 
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(fMRI) data from more than 90 participants performing three rep-
resentative and well-validated attention-demanding tasks during 
fMRI scanning. The three tasks include the gradCPT to measure 
sustained attention, multiple object tracking (MOT) to measure 
divided attention and tracking, and a visual short-term memory 
(VSTM) task to assess working memory capacity as a form of inter-
nal attention1,37. We developed a suite of attention models to predict 
individual behaviours in these tasks from functional connectivity. 
Moreover, we leveraged the network models to probe brain systems 
that support common and separable factors for attention functions 
measured during the tasks across individuals.

Furthermore, we demonstrated new ways to draw patterns of 
brain networks supporting multiple attentional processes from 
resting-state data alone. This is essential because attention tasks 
vary widely and are difficult to standardize across studies and set-
tings. It is also impractical to ask participants, especially patients 
or children, to engage in many different attention tasks, especially 
inside a brain scanner. If a profile of attentional measures can be 
derived from resting-state data, it would have significant utility for 
future research and potential for clinical applications. To achieve 
this, we utilized a novel method called connectome-to-connectome 
(C2C) state transformation modelling38. The C2C framework accu-
rately generated individual attention-related task connectomes 
from their rest connectomes and significantly improved behav-
ioural predictions.

Finally, we propose a general attention model, integrating CPM 
and C2C modelling to measure a common attention factor across 
tasks from resting-state fMRI. The proposed model successfully gen-
eralizes to four external, independent datasets (total N = 495) with 
various attentional measures, across three attention task behaviours 
and ADHD Rating Scale (ADHD-RS), suggesting its applicability 
to the broad range of attentional measures. We compared the gen-
eral attention measure to other best-performing single-task-based 
CPMs, including saCPM14. The external validations demonstrated 
that the proposed general measure best predicts a novel individual’s 
attentional abilities in diverse settings.

Results
CPMs of three attentional tasks. We first built a battery of predic-
tive models of attentional functions (Supplementary Table 1). We 
constructed nine CPMs that differed in the fMRI data on which 
they were defined and the behaviour they were trained to predict. 
In all three tasks, predicted behavioural scores significantly corre-
lated with actual task scores when CPMs used task fMRI (gradCPT, 
Pearson’s r(90) = 0.592, P < 0.001; MOT, Pearson’s r(90) = 0.469, 
P < 0.001; VSTM, Pearson’s r(90) = 0.365, P = 0.014; P values cor-
rected for family-wise error (FWE) rate in multiple tests using 
1,000 permutations, top row in Fig. 1 and Extended Data Fig. 1), 
indicating that CPMs using task fMRI accurately predict individ-
ual task scores. The CPMs using movie fMRI also accurately pre-
dicted individual performance in all three tasks (gradCPT, Pearson’s 
r(90) = 0.392, P = 0.006; MOT, Pearson’s r(90) = 0.345, P = 0.022; 
VSTM, Pearson’s r(90) = 0.350, P = 0.019; FWE corrected; bottom 
row in Fig. 1). Rest fMRI-based models predicted gradCPT and 
MOT performance (gradCPT, Pearson’s r(90) = 0.394, P = 0.005; 
MOT, Pearson’s r(90) = 0.318, P = 0.047; FWE corrected; middle 
row in Fig. 1) but failed to predict VSTM performance (Pearson’s 
r(90) = 0.158, P = 0.636; FWE corrected; middle row in Fig. 1).

A predictive model that generalizes to different settings has 
greater utility than a model that only works for a specific task. We 
investigated whether the nine basic CPMs defined to predict per-
formance on each task generalize to predict performance on other 
tasks from fMRI data measured during different attention tasks and 
task-neutral states (resting state or movie-watching). The CPMs 
trained using task fMRI successfully generalized to different atten-
tion tasks, except between MOT and VSTM (P values <0.05, FWE 

corrected using 1,000 permutations, top-left 3 × 3 sub-matrix in Fig. 
2). Interestingly, both the MOT and VSTM models predicted indi-
vidual performances in gradCPT numerically better than their own 
corresponding tasks. For example, the CPM trained using VSTM 
fMRI to predict VSTM performance predicted unseen subjects’ 
gradCPT performance from gradCPT fMRI (prediction q2 = 0.216 
and Pearson’s r(90) = 0.515) better than VSTM performance from 
VSTM fMRI (prediction q2 = 0.094 and Pearson’s r(90) = 0.365).

CPMs of a common attention factor predict task behaviours. 
To investigate whether we can build a model that predicts overall 
attention function, we performed variations of predictive modelling 
based on a behaviourally derived common attention factor, defined 
as the mean of the z-scored performance scores across the three 
tasks. We then trained nine predictive models to predict this com-
mon attention factor. All modelling procedures were the same as the 
original CPMs except for the use of the common attention factor as 
the training behaviour. The common factor CPMs with task fMRI 
successfully generalized to different attention task fMRI (Pearson’s 
r(90) values >0.37; P values <0.05, FWE corrected using 1,000 per-
mutations; Fig. 3a). The common factor CPMs better generalized 
to different tasks (numerically higher prediction performance) than 
the basic CPMs of each task (cf. Fig. 2). The predictive connectivity 
features of common factor models were distributed among multiple 
brain networks, mainly in the salience, subcortical, cerebellar, fron-
toparietal, visual II and motor networks (Fig. 3b).

We then examined whether the common factor CPMs spe-
cifically predicted shared variance between tasks or also captured 
task-specific variance for each behaviour. We first examined the 
degree to which common factor models captured shared vari-
ance among the three tasks by estimating the correlation between 
model-predicted scores and the observed common factor. Predicted 
common factor scores and observed common factor scores were 
significantly correlated across combinations of training and test-
ing fMRI (Extended Data Fig. 2a). Correlations between predicted 
and observed common factors were, in general, numerically higher 
than the correlations between the predicted common factor scores 
and observed scores of each task (Fig. 3a), implying that the com-
mon factor CPMs capture variance shared by three tasks more than 
variance unique to each task. We additionally assessed whether the 
common factor models also predict unique variances in different 
tasks. We ran a partial correlation between predicted and observed 
behavioural scores, controlling for the observed common factor. 
The models did not capture variances specific to each task in gen-
eral (Extended Data Fig. 2b). These observations demonstrate that 
CPMs of a common attention factor indeed predict an overall atten-
tional ability underlying different attention tasks but do not capture 
task-specific variance.

Factors driving high generalizability of attention CPMs. The 
CPMs’ high generalizability (Figs. 2 and 3a) may seem trivial given 
the significant correlations in the behavioural scores between tasks 
(Extended Data Fig. 3). To examine whether the generalizability of 
CPMs between tasks is fully driven by the correlations in behaviour 
between them, we constructed variants of CPMs. In this analysis, 
CPMs were trained to predict unique variance in behaviour specific 
to each task. The task-specific variance was defined by the residual 
after regressing the two non-target task behaviours out from tar-
get task behaviours. The task-specific variance had zero correlation 
with the two remaining non-target behaviours (Supplementary 
Table 2). All other steps except the target behaviour remained the 
same as the original modelling. A cross-task prediction pattern of 
task-specific models was similar to the original models (Fig. 4a,b). 
The models with task fMRI successfully predicted behaviours in dif-
ferent tasks, except between MOT and VSTM (Pearson’s r(90) val-
ues >0.31; P values <0.05, FWE corrected for multiple tests using 
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1,000 permutations; top-left 3 × 3 sub-matrix in Fig. 4a,b). That is, 
even after we explicitly orthogonalized the behavioural measures, 
we still observed cross-task generalization. This result suggests that 
the generalizability of the attention CPMs to different tasks cannot 
be simply explained by the correlation between training and testing 
behaviours (Supplementary Table 2).

To further test the effect of the common attention factor, we 
re-assessed the prediction accuracy of the task-specific CPMs while 
controlling for the shared variance between tasks using partial cor-
relation. After controlling for the common factor, the majority of 
cross-predictions were not significant (Extended Data Fig. 4). This 
suggests that brain networks underlying the common attention factor 
and networks underlying unique variances are partially overlapping. 
To confirm, we compared the predictive anatomy of task-specific 
CPMs (Fig. 4c) with that of a common factor CPM (Fig. 3b).  
Functional connections in the salience, subcortical and cerebellar 
networks emerged as the predictive networks shared between the 
task-specific and the common factor CPMs (Supplementary Fig. 1).  

Taken together, shared and unique variances in the three attention 
tasks could be, in part, explained by the same brain system that 
consists of connections between salience, subcortical and cerebellar 
networks, facilitating generalizable model predictions across tasks.

Multiple brain networks contribute to model predictions. We 
observed that CPMs of a common attention factor accurately predict 
an individual’s attentional behaviours in different tasks (Fig. 3a).  
Given the common involvement of connections of salience, sub-
cortical and cerebellar networks across three tasks (Fig. 3a), we 
expected that the same networks would play a key role in predict-
ing an individual’s overall attention. To explicitly evaluate each 
network’s contribution to prediction accuracy and compare across 
networks, we computationally lesioned all the nodes in each of the 
ten networks18,39 iteratively and then trained and tested three task 
fMRI-based CPMs in the same way the original CPMs were con-
structed. Lesioning the salience network significantly decreased 
prediction accuracy (mean decrease 0.021, P = 0.018 using 1,000 
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Fig. 1 | Prediction accuracy of nine CPMs. Rows show fMRI data used in model construction and prediction, while columns represent the target attention 
task. Models’ prediction accuracies were assessed by correlating model-predicted behavioural scores and observed scores. P values were obtained using 
1,000 permutations (corrected for nine tests).
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permutations; Fig. 5a and Supplementary Fig. 2a). Lesioning cer-
ebellar or subcortical networks also decreased prediction accu-
racy, although not significantly, compared with lesioning the other 
seven networks, suggesting that salience, subcortical and cerebel-
lar networks may contain behaviourally relevant and unique infor-
mation that is absent from other networks. To confirm that the 
lower performance was not driven by the smaller number of model 
features after lesioning, we estimated the correlation between 
prediction performance and the number of post-lesioning con-
nections (Supplementary Table 3). We did not find a significant 
positive correlation, supporting the finding that the salience net-
work indeed plays a major role in predicting attentional behav-
iours across tasks.

We performed a complementary analysis to examine the pre-
dictive power of each network directly. We built predictive mod-
els only using the within-network connectivity of each network, 
iteratively for each network. This analysis revealed that the fron-
toparietal, subcortical, salience and motor networks are the most 
predictive networks (P < 0.001 using 1,000 permutations; Fig. 5b 
and Supplementary Fig. 2b). Although prediction performance 
was lower than that of the original models (r ≈ 0.43), the prediction 
accuracy by each network is notable given the significantly fewer 
number of predictive edges in these models compared with the orig-
inal CPMs (Supplementary Table 3 and Fig. 3b).

Note that this analysis examined the predictive power of only 
edges located within a network of interest. In contrast, the previous 
lesioning analysis examined the importance of edges within a target 
network and edges connecting a target network to the other nine 
networks together. To further differentiate the roles of within- and 
between-network connectivity in prediction, we assessed the pre-
dictive power of between-network connectivity for each network. 
We constructed a new set of CPMs using functional edges that  

connect one network with the other nine networks, performing this 
analysis iteratively for each of the ten networks. We found that the 
connectivity of the salience network was again the most predictive 
of individual attention on average, even numerically better than the 
original models (Fig. 5c and Supplementary Fig. 2c). The models’ 
performances mirrored results from the lesioning analysis. The 
salience, cerebellar and subcortical networks accurately predicted 
individual behaviours. Again, to confirm that the lower perfor-
mance was not driven by the smaller number of between-network 
connections, we estimated the correlation between performance 
and the number of edges but did not find any significant positive 
correlation between them.

Brain networks predicting general attention. Given the impor-
tance of the salience, subcortical, cerebellar, frontoparietal and 
visual II networks in predicting individual attentional behaviours, 
we asked whether connectivity between these networks can predict 
individual behaviours in attention tasks with an accuracy com-
parable to the original, whole-brain models. The CPMs using the 
connectivity between the five networks fully generalize across dif-
ferent task-related behaviours (Extended Data Fig. 5). Of all models 
made by selecting any three out of five networks, the model using 
the salience, frontoparietal and subcortical networks best predicted 
individual behaviours on average, and its prediction performance 
was comparable to the performance of the original, whole-brain 
model (Extended Data Fig. 5). This result suggests that connectiv-
ity between these three networks may be associated with a com-
mon component of attention. As a control analysis, we built a model 
using the other five networks (the medial-frontal, default mode, 
motor, visual I and visual association networks) and found that the 
model’s prediction was significantly less accurate than the previ-
ous five-network model or even the three-network (the salience,  
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Fig. 2 | Cross-prediction results of nine original CPMs across all cognitive states and attention tasks. a, Models’ prediction accuracies assessed by 
prediction q2. Negative q2 is set to zero in this figure. Rows represent combinations of fMRI data and behaviour scores used in model construction, while 
columns represent combinations of fMRI data and behaviour scores used in model validation. On-diagonal elements represent the nine within-task 
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fMRI to predict VSTM performance was applied to gradCPT fMRI to predict gradCPT performance, the prediction performance was q2 = 0.22 (and r = 0.52 
in b). Similarly, when a CPM trained using rest fMRI to predict VSTM performance was applied to movie fMRI to predict MOT performance, performance 
was q2 < 0 (and r = 0.22 in b). The models with task fMRI successfully generalized to different attention tasks, except CPMs between MOT and VSTM 
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frontoparietal and subcortical networks) model (Extended Data 
Fig. 5). This result is in line with the previous observation that the 
CPMs of a common attention factor accurately predict attention 
task performances (Fig. 3) and corroborates these networks’ general 
importance in attentional functions.

State transformations improve predictions from rest fMRI. The 
results above demonstrated that task-based connectomes led to 
better prediction of behaviours compared with rest connectomes. 
Nevertheless, resting scans still have the indisputable advantages 
of (1) enhancing data retention by reducing the demand on par-
ticipants, especially in clinical populations, and (2) facilitating data 
coordination across studies and sites for a large-scale multi-site 
study. Therefore, we next asked whether we could improve the pre-
dictive power of resting fMRI by applying a recently introduced 
approach: C2C state transformation modelling38.

The C2C model-generated task connectomes accurately resem-
bled their corresponding empirical task connectomes (Extended 
Data Fig. 6). More remarkably, individual attentional behaviours 
were better predicted by the generated task connectomes than by 
the empirical rest connectomes alone (P values <0.05 from 1,000 
permutations; Fig. 6). The results from the movie connectomes are 
also shown in Extended Data Fig. 6 and Supplementary Fig. 3.

A general attention model. Lastly, unifying the models and find-
ings above, we propose a general attention model to provide a single 
standardized measure of a person’s overall attention functioning 
based on resting-state data alone. This general model consists of a 

hybrid attention connectome (Extended Data Fig. 7), the common 
attention factor, C2C transformation modelling and CPM.

The general attention model accurately predicted individual 
performance in the three attention tasks based on the rest connec-
tome. The general attention model was significantly better than the 
gradCPT, MOT and VSTM task models applied to rest data (P val-
ues <0.001 for both prediction q2 and Pearson’s r(90) in all three 
comparisons; Fig. 7a). The general model successfully predicted 
individual behavioural performance in both prediction q2 and cor-
relation r assessment. In contrast, when the three single-task-based 
models were applied to rest data, they could not successfully pre-
dict individuals’ actual scores (prediction q2 values of 0; Figs. 2a 
and 7; see Supplementary Fig. 4 for movie data). Importantly, the 
general model captures the variance in behaviours across all three 
tasks better than any of the single-task CPMs, which made weaker 
predictions for non-native tasks, even for predicting individual dif-
ference (correlation r in Fig. 7a). The stronger predictive power and 
the higher generalizability of the general model suggest its potential 
broad applicability.

The general model generalizes to four external datasets. Above, 
the proposed general attention model was cross-validated within 
the attention dataset we collected (n = 92). However, a small sample 
size can produce large variance in the accuracies of predictive mod-
els, and therefore cross-validation results may not be reliable19,40. To 
more rigorously validate the general attention model’s generalizabil-
ity and practical applicability, we ‘stress tested’ the general model on 
four diverse and independent datasets. We compared the general 
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model’s prediction performance with performances of two original 
CPMs (models 1 and 4 in Supplementary Table 1) that yielded the 
best performance on average among all single-task-based models 
(Figs. 2 and 7) and sustained attention CPM (saCPM), which is 
arguably one of the state-of-the-art personalized fMRI-based atten-
tion prediction models14. The saCPM’s prediction performance and 
generalizability have been extensively demonstrated in multiple 
studies6,14,15,24,41,42. The saCPM is conceptually the same as model 
1 in the current study, but constructed on different datasets. Both 
models were constructed using fMRI data and behavioural perfor-
mances in gradCPT, but experimental task designs, including scan 
durations, were different.

The four datasets consist of rest connectomes and different 
attention-related measures: (1) gradCPT performance (d′) from 25 
adults14, (2) Attention Network Test (ANT) performance (response 
time (RT) variability) from 41 adults24,25, (3) Short Penn continuous 
performance task (SCPT) performance (RT for true-positive trials) 
from 316 adults22, provided by the Human Connectome Project 
(HCP)43 and (4) ADHD-RS-IV scores44 from 113 children and 
adolescents with and without ADHD diagnoses14 provided by the 
ADHD-200 consortium45. Since the saCPM was defined in the first 

external dataset of this study, we examined its external performance 
only in the other external datasets (ANT, SCPT and ADHD-RS).

The general model successfully generalized to predict differ-
ent attentional measures in the four external datasets. It not only 
captured individual differences in attention function (external data 
1, Pearson’s r(23) = 0.472, P = 0.012; external data 2, r(39) = 0.340, 
P = 0.012; external data 3, r(314) = 0.106, P = 0.029; external data 
4, r(111) = 0.230, P = 0.002; 1,000 permutations; Fig. 8) but also 
accurately predicted standardized scores from individuals (external 
data 1, prediction q2 = 0.200, P = 0.012; external data 2, q2 = 0.129, 
P = 0.012; external data 3, q2 = 0.010, P = 0.029; external data 4, 
q2 = 0.051, P = 0.002; 1,000 permutations; Fig. 8). In contrast, the 
three CPM models trained using gradCPT or rest fMRI failed to 
predict actual individual attention abilities from rest fMRI in all 
four datasets (except the rest-based CPM in the first external data-
set), although they could predict individual differences (correlation 
r in Fig. 8). To further probe the model prediction, we visualized 
predictions of individual scores against their observed scores with 
a fitted line in each scatter plot (Extended Data Fig. 8). In fitting a 
line, we did not constrain the intercepts. As attentional measures 
were z scored in each dataset, a fitted line that closely passes the  
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origin [0, 0] with a positive slope, staying within the white quad-
rants, implies an accurate prediction of actual scores. In all four 
datasets, the general model’s fitted line passed the origin more 
closely than the other three CPMs. This indicates that the general 
model most correctly predicts that a person whose score is better 
than the population average (observed z > 0) has a higher attention 
function (predicted z > 0) while one whose ability is below the aver-
age (observed z < 0) has a lower attention function (predicted z < 0).

We further compared the prediction error of the general model 
and three CPMs by estimating the mean square error (MSE) 
between predicted and observed scores in each dataset. The gen-
eral model significantly reduced MSE compared with null predic-
tions (P values <0.05 from 1,000 permutations) in all four datasets 
(Extended Data Fig. 9, top left). In addition, the general attention 
model produced the lowest prediction error in all external datasets. 
This result further supports the higher generalizability and practi-
cal applicability of the proposed general attention model over any 
single-task-based CPM.

Discussion
We developed a suite of whole-brain CPMs that can predict both a 
common (task-general) and task-specific aspects of attention from 
an individual’s single-task or resting-state fMRI data. The network 
models accurately predicted sustained attention, divided attention 
and tracking, and working memory capacity. By leveraging these 
models, we uncovered the underlying brain networks supporting a 
general component across these attentional functions. We repeat-
edly observed that patterns of multiple brain networks, including 
the salience, subcortical, cerebellar and frontoparietal networks, 
drive accurate prediction of individuals’ attentional abilities across 
tasks, suggesting that these networks support a common (general) 
attention factor. To further enhance the measurement of attention, 
we applied a novel analysis framework, C2C modelling38, and dem-
onstrated that we can generate the patterns of individuals’ atten-
tion task connectomes from their rest connectome alone. More 
remarkably, the generated task connectomes substantially improved 
the prediction of individual attentional behaviours in either a 
task-specific or general manner. Finally, by combining connectomes 
from the multiple attention tasks in our study, a common attention 

factor, the C2C framework and CPM behaviour prediction, we were 
able to derive a general attention model that captured standardized 
individual behaviours better than any task-specific models applied 
to rest data, and showed superior generalizability across tasks, both 
within our study and in four external datasets with diverse atten-
tional measures, making it a powerful measure with broad utility.

Our general attention model was based on three tasks, which 
cover many fundamental dimensions of attention: sustained 
attention, divided attention and tracking, and working memory. 
Amongst the specific tasks, the gradCPT task supports the stron-
gest predictions and generalizability to other tasks here and in 
other studies14,23,25. Therefore, when only one attention task can be 
conducted in the scanner, we recommend the use of the gradCPT. 
When only rest data are available, the general attention model offers 
the most generalizable and valid measure of attention, distinct from 
other variables such as intelligence or age.

The gradCPT, MOT and VSTM tasks tested here are only a small 
sample of the wide variety of attention tasks developed over decades 
of research. Therefore, the general attention measure might not 
span this entire range, and the long-term goal would be to build a 
truly ‘universal’ model. However, having tested a wider variety of 
tasks, Huang et al. demonstrated that there appears to be only one 
general factor that is shared across them, and we believe that this 
is what underlies the general attention measure proposed here10. 
As further external validation, unprecedented for an fMRI study, 
we validated the general attention model across multiple measures 
of attention (performances in gradCPT, MOT, VSTM, ANT, SCPT 
and ADHD-RS), laboratory or clinical data (healthy and ADHD 
diagnosis), different age groups (adults and children/adolescents), 
variable data acquisition sites (two centres in New Haven, one in St. 
Louis and one in Beijing) and data processing procedures (AFNI, 
Bioimage Suite with SPM, and FSL). The fact that our general atten-
tion model still generalizes successfully despite these challenges 
demonstrates its broad applicability and potential.

Importantly, the general attention model captures an over-
all attentional variance that cannot be explained by other general 
phenotypes such as g factor and age. In two external datasets, the 
general model’s prediction accuracy actually increased when con-
trolled for age and intelligence, indicating that the proposed general  
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attention measure is specific to an individual’s overall attention 
function and cannot be explained by other general aspects of cog-
nition or maturity. Future work can further validate the general 
attention measure across different tasks and datasets such as the 
Philadelphia Neurodevelopmental Cohort46 and Adolescent Brain 
Cognitive Development Study47 to demonstrate the universality of 
the general attention measure.

CPMs successfully generalized to predict performance across 
three different attention tasks: sustained attention, tracking and 
visual working memory (Fig. 2). For example, a model trained to pre-
dict individual behaviours in gradCPT accurately predicted perfor-
mance in both MOT and VSTM. This generalizability of predictive 
models across different attention tasks suggests that there are shared 
neural components supporting a general attention factor across the 
tasks. Previous studies revealed a general attention factor10 and the 
neural system underlying attentional performance in diverse tasks48, 

and more generally, cognitive control49–51. Going beyond these stud-
ies, our CPM approach looks at connectivity patterns that can fur-
ther predict quantifiable performance across multiple tasks and an 
overall attentional ability in unseen, novel individuals.

The brain networks of the common attention factor mainly 
recruited the salience, subcortical, cerebellar and frontoparietal 
networks (Fig. 3b). CPMs tuned to the general attention factor 
exhibited prediction accuracy and generalizability that are higher 
than or comparable to the native task models in predicting each task 
behaviour, suggesting a pervasive role of these networks in different 
attentional components.

To further understand the relative contribution of each canoni-
cal brain network for the general attention factor, we computation-
ally lesioned each network in isolation and examined the impact 
on whole-brain CPM performance. We observed that the salience 
network, followed by the subcortical and frontoparietal networks, 
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is the most important network in predicting individual attentional 
behaviours across all tasks in general, exhibiting high generalizabil-
ity (Fig. 5, Extended Data Fig. 5 and Supplementary Fig. 2). The 
results further show that these networks play a primary role in atten-
tion performance across tasks. The involvement of these networks 

in CPM is in line with previous findings that attention-related tasks 
induce or modulate a functional engagement of frontal and parietal 
areas48,52–55 and subcortical areas56–58.

Interestingly, we also found that connectivity between the cer-
ebellum and other networks is an informative marker of individual 
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attentional performance (Fig. 5). Although the cerebellum is tradi-
tionally considered important for motor control, cerebellar involve-
ment in higher cognition has also gained attention over the last 
three decades59–63. Advances in brain imaging techniques started to 
reveal cerebellar connections with higher association cortices and 
co-activation with cortical networks in various cognitive tasks64. 
Cerebellar involvement in attention has also been well documented, 
such as attention-induced cerebellar activation65, attentional modu-
lation on the cerebellar activity66 and attention deficits with cerebel-
lar lesions67.

To enhance the practicality of the current approach, we extended 
CPM modelling with a novel method called C2C modelling. We 
showed that C2C modelling accurately predicted individuals’ 
attention-task connectomes from their rest connectomes. Notably, 
the predictive power of rest connectomes considerably increased 
when using C2C transformation. This result demonstrates the 
potential of using connectome state transformation to substantially 
improve the prediction performance of CPMs, achieving the best 
of both worlds: the high predictive power of task data and the rela-
tively convenient acquisition of resting-state data. The C2C state 
transformation framework in the general attention model offers a 
novel solution to the current trade-off between predictive power 
and difficulty in data collection, holding promising potential for 
practical applications. On the one hand, task-based fMRI provides 
better prediction performance compared with resting-state data, 
perhaps due to unconstrained mind wandering that may result in 
more variable mental states from scan to scan and from subject 
to subject at rest25,29,68–71. On the other hand, rest scans are much 
easier to collect consistently across studies and sites. For example, 
since clinical populations may have difficulty performing certain 
tasks72, researchers or clinicians can obtain rest scans from patients 
because of its simplicity and minimal demands73, a main reason 
why resting-state fMRI has gained popularity in clinical and other 
neuroimaging studies. C2C modelling combines the advantages of 
these two and improves the diagnostic value of rest scans, lessening 
the burden of conducting multiple scans or trying to standardize 
tasks across individuals.

Our approach of combining CPM and C2C modelling should be 
useful in studying other mental abilities such as memory and intel-
ligence, and related neuropsychiatric disorders such as ADHD and 
dementia. This approach can derive estimates of multiple cognitive 
measures from a single rest scan, analogous to how physicians can 
assay multiple health measures from a single blood sample. With 
further development, the proposed general model may have poten-
tial clinical utility, for example, in monitoring and evaluating the 
effect of treatments and interventions on brain function, or provid-
ing a cognitive measure for non-communicative patients to support 
a clinical decision.

Methods
This study was approved by the Yale University Institutional Review Board.

Subjects and experimental designs. A total of 127 right-handed, neurologically 
healthy individuals with normal or corrected-to-normal vision participated in a 
two-session fMRI study for monetary reward (80 female, age 18–35 years, mean 
23.15 years, s.d. 4.43 years). Data from 35 participants were excluded from the 
analysis due to excessive head motion (>3 mm maximum head displacement and 
>0.15 mm mean framewise displacement) during fMRI scanning, a small number 
of fMRI volumes (<120 TRs) after censoring, task performances with lower or 
higher than 2.5 s.d. from the group mean in both sessions or low imaging data 
quality by visual quality check. The remaining 92 individuals with all behavioural 
and imaging data were included in the main analysis (60 female, age 18–35 years, 
mean 22.79 years, s.d. 4.24 years). Two fMRI sessions were separated by 
approximately two weeks (mean 17.31 days, s.d. 20.21 days, median 12 days). Based 
on preliminary data, we performed a power analysis to predetermine a sample size 
of 84 participants at 0.8 power. The current sample size (92 participants analysed 
and 127 participants in total) is high relative to other single-site studies in the 
neuroimaging literature.

Each fMRI session started with an anatomical magnetization-prepared rapid 
gradient-echo (MP-RAGE) sequence followed by 10-min resting-state runs (two 
runs in session 1, one run in session 2) and a 7:16-min watching-movie run 
(Inscapes)74. Afterward, all participants performed three 10-min attention-related 
tasks whilst in the scanner: gradCPT, MOT and VSTM. The order of these 
tasks was counterbalanced across participants and sessions. An additional task, 
either the Attention Network Task (ANT)35 or an n-back task, was collected after 
completing the three main tasks in session 2, but these tasks are not included in 
this study because of the smaller number of subjects who performed these tasks. 
Visual stimuli in task fMRI were presented using Psychtoolbox-3 in MATLAB 
R2016b. PsychoPy2 (version 1.85.3) was used to present ‘Inscapes’ during 
movie-watching fMRI. All participants provided written informed consent and 
were paid for their participation.

Three attention tasks. Participants performed three attention-related tasks in 
the scanner. Task performance was assessed with sensitivity (d′), accuracy (%) 
and working memory capacity (Pashler’s K) for gradCPT, MOT and VSTM, 
respectively. To calculate task performance scores, we averaged scores from the 
two sessions for each task. For those who had only one session that met our data 
inclusion criteria (29 subjects for gradCPT, 25 subjects for MOT, 22 subjects for 
VSTM), we used the task score of the available session in the analysis.

Gradual-onset continuous performance task. The gradCPT is a task that measures 
sustained attention and inhibitory control34,75. In this 10-min task, participants saw 
grayscale photographs of scenes gradually transitioned from one to the next. The 
scenes consist of city scenes that appear in 90% of the total trials and mountain 
scenes that appear in only 10% of the total trials. Each scene transitioned every 
800 ms, and participants were asked to respond every time they saw a city scene 
by pressing a button with their right index finger and withhold responses to the 
mountain scenes. The task consisted of 740 trials. Sensitivity (d′) was calculated 
to assess task performance, as z(hit rate) − z(false alarm rate), since it reflects a 
subject’s performance more reliably than percentage accuracy given the imbalanced 
target to non-target ratio (9:1). We observed that sensitivity d′ and percentage 
accuracy are highly correlated (Pearson’s r(90) = 0.90, P = 6.63 × 10−34).

Multiple object tracking. MOT measures divided attention, tracking, working 
memory capacity, spatial attention, inhibition and sustained selective attention76. 
In this 10-min task, participants tracked multiple target objects while all stimuli 
were moving. At the beginning of each trial, participants were presented with 12 
randomly spread identical white discs on the screen. For each trial, three or five 
discs among the 12 flashed green and turned back to white, designating them as 
the target discs of that trial, while the remaining, non-target discs remained white. 
All of the 12 discs then moved around the screen for 5,000 ms, then 1 of the 12 
discs was probed. Participants were instructed to press a button with their right 
index finger if the probed disc was one of the original targets and press with their 
right middle finger if it was not. Participants had 2,000 ms to respond. The task 
consisted of 56 trials, and performance was assessed by a per cent accuracy.

Visual short-term memory task. VSTM measures visual working memory capacity 
that stores visual information77. In this 10-min task, participants saw discs of 
the same size but different colours on the screen for 100 ms and were asked to 
remember the colours of individual discs after 600 ms of fixation period. The 
number of discs for each trial varied from two to eight (two, three, four, six or 
eight discs). The stimuli were replaced by a fixation mark for 900 ms, and the discs 
reappeared with or without colour changes. Participants were instructed to press a 
button with their right index finger if they detect any colour changes between the 
two appearances of the discs and press the other button with their right middle 
finger if no change had occurred. Participants had 2,000 ms to respond. The task 
consisted of 160 trials. For half of the total trials, original discs were replaced 
by different colours of discs, whereas for the other half of the trials, the original 
discs remained unchanged. Performance was assessed with a measure of working 
memory capacity, Pashler’s K (ref. 78), the average value of set size × (hit rate − false 
alarm rate)/(1 − false alarm rate) (ref. 79).

Behavioural analysis. Given that all tasks required attentional ability, individuals 
who performed well in one task were expected to perform well on others. To 
confirm how behaviours in different attentional tasks are related, we computed 
Pearson’s correlation between individual performance scores on every pair of tasks, 
resulting in three between-task similarity metrics: between gradCPT and MOT, 
gradCPT and VSTM, and MOT and VSTM.

The between-task similarity estimate should be constrained by the reliability 
of the behavioural measures we adopted. Therefore, before computing a similarity 
of individual performance on the three tasks, we assessed the reliability of each 
behavioural measure by computing an intra-class correlation coefficient. For this 
reliability analysis only, we used subjects who had acceptable behavioural scores 
from both sessions for each task, resulting in a different number of available 
subjects for each task: 65 for gradCPT, 69 for MOT and 71 for VSTM. Within 
these sub-samples, we estimated the intra-class correlation coefficient of individual 
performance between the two sessions for each task.
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MR imaging parameters and pre-processing. MRI data were collected at the 
Yale Magnetic Resonance Research Center and the Brain Imaging Center at Yale 
with a 3-T Siemens Prisma system and 64-channel head coil. A high-resolution 
MP-RAGE sequence was collected at the beginning of each session with the 
following parameters: repetition time of 1,800 ms, echo time of 2.26 ms, flip 
angle of 8°, acquisition matrix of 256 × 256, in-plane resolution of 1.0 mm2, slice 
thickness of 1.0 mm and 208 sagittal slices. After the MP-RAGE sequence, 10-min 
resting-state scans, two scans in session 1 and one in session 2, were collected, 
followed by an ‘Inscapes’ movie-watching run (7:16 min). After these passive 
viewing scans, participants performed three 10-min main attention-related tasks 
(gradCPT, VSTM and MOT) with a button box in their right hand. Each of the 
three tasks and resting-state scans included 600 whole-brain volumes acquired 
using an echo planar imaging sequence with the following parameters: repetition 
time of 1,000 ms, echo time of 30 ms, flip angle of 62°, acquisition matrix of  
84 × 84, in-plane resolution of 2.5 mm2, 52 axial-oblique slices parallel to the 
anterior commissure–posterior commissure line, slice thickness of 2.5 mm, 
multiband 4 and acceleration factor of 1. This information was also provided in a 
previous study that analysed a subset of the current dataset (49 subjects with two 
usable gradCPT runs at the time of the study)6.

Collected data were pre-processed with Analysis of Functional NeuroImages 
(AFNI)80. The pre-processing procedure included the following steps: removing 
the first three volumes; censoring of volumes containing outliers in more than 
10% of voxels; censoring of volumes for which the Euclidean norm of the head 
motion parameter derivatives are greater than 0.2 mm; despiking; slice-time 
correction; motion correction; regression of mean signal from the CSF, white 
matter, and whole brain and 24 motion parameters. fMRI data were aligned to 
the high-resolution MP-RAGE anatomical image and normalized to Montreal 
Neurological Institute space. All the following analyses were performed in 
MATLAB R2016b.

Whole-brain functional connectome. Network nodes were defined using a 
268-node whole-brain functional atlas that covers the cortex, subcortex and 
cerebellum81. We excluded 23 nodes (due to imperfect acquisition of fMRI data 
from these areas in at least one subject), resulting in 245 nodes analysed in this 
study. For each participant, an averaged time-series signal was calculated for each 
node, and Pearson’s correlations between all possible pairs of the 245 nodes were 
computed. The pairwise correlations were then Fisher z-transformed, resulting 
in a 245 × 245 symmetrical whole-brain functional connectivity matrix (29,890 
unique edges). We calculated the connectivity matrix for each session separately 
and averaged them across two sessions for the final analysis. For those who had 
only one session that met our data inclusion criteria (29 subjects for gradCPT, 25 
subjects for MOT, 21 subjects for VSTM), we used the connectivity matrix from 
the available session in the analysis. Every individual had five connectivity matrices 
including three attention-related, one resting-state and one movie-watching.

Brain-based prediction of individual behaviours across tasks. Connectome-based 
predictive modelling. We constructed and validated CPMs using a ten-fold 
cross-validation (CV). In building CPMs, we held one fold (10%) of subjects out 
for model testing, with 82 or 83 participants in the training set. In training the 
CPM model, we first selected features (edges) that were significantly correlated 
with individual behaviours in a target task (Pearson’s, P < 0.05). These features 
yielded both positive and negative edge masks depending on the signs of their 
correlation with behaviour. For each subject in the training set, two networks’ 
strengths (one from the positive and the other from the negative network) were 
measured by averaging their respective connectivity strengths. Then, we fitted a 
general linear model between task performance (a dependent variable) and the 
two network strengths (independent variables). Once the two network masks 
and a general linear model were constructed, we applied the CPM to the held-out 
testing subject. The CPM estimated two network strengths for the test subject and 
predicted the subjects’ task performance from their network strength measures. 
Every fold was iteratively used as a test set in ten-fold CV. We repeated this ten-fold 
CV 1,000 times by randomly assigning subjects across ten folds. Behavioural scores 
were z scored for each task within a training set. Then, a mean and s.d. computed 
within a training set were used to normalize behaviours of testing samples. 
z-Scoring was essential to provide a standardized behavioural measure, enabling 
the predictions across multiple tasks with incompatible scoring scales. We used raw 
scores only in the visualizations of a reliability of behavioural measures with scatter 
plots (Supplementary Fig. 5a).

We assessed each model’s prediction performance by correlating 
model-predicted individual task scores and observed task scores. A significant 
positive correlation indicates that the model successfully predicts individual 
differences in behavioural performance. We also estimated the prediction equation 

q2 = 1 −

(

MSE(predicted,observed)
MSE(0,observed)

)

 to further validate model prediction82. The MSE 

of model-predicted scores was divided by the MSE of guessing all z scores equal to 
zero, then this normalized MSE was subtracted from 1 to yield q2. The prediction 
q2 represents a model’s numerical accuracy in predicting an individual’s actual 
behavioural score compared with simply guessing their mean behaviour. Hence, 
the prediction q2 complements the correlation-based model assessment and could 

inform a stronger practical utility of a predictive model. The 1,000 repetitions 
of ten-fold CV and model evaluation by r and q2 were applied to all following 
modelling analyses done within the n = 92 dataset.

We previously demonstrated that CPMs are robust against the choice of feature 
selection threshold within the range of traditional statistical significance (for 
example, P = 0.05–0.001)22,25. We tested a similar range of selection thresholds in 
the current study and confirmed that the results remained similar across the range 
(Supplementary Fig. 6).

CPMs of a common attention factor. To examine how well a shared variance 
component of attention can explain behaviours on a variety of attentional tasks, 
we built CPMs using a common factor of the three tasks. In this analysis, we 
trained five predictive models to predict a common attention factor. All modelling 
procedure was the same as the original CPMs except the use of a common 
attention factor as a target behaviour of interest. Before constructing a common 
attention factor, we z-scored behavioural scores for each task within a training 
set. Then, we normalized behaviours of testing samples using a mean and s.d. 
computed within a training set. z-Scoring was essential to provide a standardized 
measure, enabling the generalization across different tasks with incompatible 
scoring scales. The common factor was defined by a mean of z-scored behaviours 
across the three tasks. The mean z score was highly correlated with a shared factor 
extracted from factor analysis or the first principal component from principal 
component analysis (PCA) (Pearson’s r(90) values >0.992; Supplementary Tables 4, 
5 and 6) and also in a training set of every iteration. To reveal a set of connectivity 
features that supports the common factor of attention across all three task fMRI 
conditions, we tracked an overlap of predictive connectivity between three task 
fMRI-based models of the common attention factor.

Significance testing with corrections for multiple tests. We evaluated the significance 
of model performance using (one-tailed) permutations. We ran 1,000 permutations 
to construct 1,000 null models for the 81 model predictions. In each permutation, 
individual performances were randomly shuffled, and the null CPMs were trained 
and tested with connectivity matrices and the shuffled performances for 81 
prediction cases. We assessed the performance of the null models by correlation r 
and prediction q2.

Importantly, we used the permutations to correct for multiple tests 
(Supplementary Fig. 7a). To do this, we first divided 81 predictions into three 
groups based on cognitive states of fMRI in training and testing datasets (group 
1: nine original CPMs’ within-task predictions, on-diagonal elements represented 
with a blue line in Supplementary Fig. 7a; group 2: nine CPMs’ predictions when 
they were applied to different fMRI to predict same task from training data, 
represented with light-green lines; group 3: nine CPMs’ predictions when they 
were applied to different fMRI to predict different task, without any lines). We 
corrected the FWE rate for multiple comparisons in each case group separately 
using the maximal statistic permutation test83. For each case group, the maximum 
null performance was selected in each permutation run. This yields 1,000 
maximum performance null models for each group. We compared observed 
model performance with the 1,000 maximum null performance distribution of 
the corresponding group. The FWE-corrected significance of the observed model 
performance was calculated as P = (1 + the number of the null max performances 
better than the observed model performance)/1,001. When we corrected for all 81 
prediction cases simultaneously, the pattern of significant predictions remained 
similar (Supplementary Fig. 7b).

Predictive anatomy of attention CPMs. We explored the predictive anatomy of 
CPMs to reveal the anatomical basis of the attention tasks and the general attention 
factor among three tasks. Each fold and repetition of ten-fold CV provided 
positive and negative network masks for each model. We extracted the most robust 
edges that appeared in 75% of ten-fold CV 1,000 iterations of each modelling. 
These robust predictive edges were then visualized with ten canonical networks 
(medial-frontal, frontoparietal, default mode, motor, visual I, visual II, visual 
association, salience, subcortical and cerebellum) defined in previous studies18,39. 
We tested different frequency thresholds (90% and 100%) in visualization and 
confirmed that the results remained similar (Supplementary Fig. 8).

Controlling for behavioural correlations between tasks. In the original CPMs 
of three attention tasks, we examined the generalizability of CPMs across different 
tasks. Successful generalization, however, may be considered trivial, given the 
significant correlation of individual performances between tasks. To address this 
issue, behavioural correlations across tasks were taken into account. We regressed 
two non-target task behaviours from target task behaviours and considered 
residual target task-specific variance. The current models were trained to predict 
the residual variance specific to a target task. We assessed the significance of 
the model performance as described in Significance testing with corrections for 
multiple tests section with 1,000 repetitions of ten-fold CV, corrected using 1,000 
permutations.

Although feature edges were correlated to the variance unique to a target task, 
it is possible that the feature edges were also associated with a shared variance. To 
address this possibility, we estimated partial correlations between model-predicted 
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and observed behavioural scores while controlling for a common attention factor 
of the three tasks. We assessed the significance of the model performance as 
described in Significance testing with corrections for multiple tests section with 
1,000 repetitions of ten-fold CV, corrected using 1,000 permutations.

Role of canonical brain networks in attentional behaviours. CPMs with 
computational lesion in brain networks. Next, we investigated which brain 
network is the most predictive of all three attention task scores. To assess the 
network-wise importance in behavioural prediction, we divided 245 brain nodes 
into ten canonical networks (medial-frontal, frontoparietal, default mode, motor, 
visual I, visual II, visual association, salience, subcortical and cerebellum)18,39 
and computationally lesioned all nodes of a given network. We constructed and 
evaluated the nine CPMs of the reduced size of the connectivity matrix after 
lesioning one network. We repeated this procedure by lesioning each network 
iteratively. We restricted this analysis to task fMRI connectivity, which yielded a 
successful prediction in the preceding analysis. We assessed the significance of 
the model performance as described in Significance testing with corrections for 
multiple tests section with 1,000 repetitions of ten-fold CV.

CPMs using within-network and between-network connectivity. In addition to the 
computational lesioning, we performed complementary analyses to examine the 
predictive power of brain networks. In this analysis, we restricted CPMs to use 
functional connections of only one brain network instead of the whole-brain 
connectivity. This analysis was further separated into two parts. First, we 
constructed CPMs based on connectivity within each brain network. Second, 
we constructed CPMs based on the connectivity of one target network to the 
other nine networks. Hence, the first analysis was to examine the predictiveness 
of within-network connectivity, while the second analysis was to examine the 
predictiveness of between-network connectivity. We assessed the significance of 
the model performance as described in Significance testing with corrections for 
multiple tests section with 1,000 repetitions of ten-fold CV.

Generating attention connectomes from resting-state fMRI. We utilized a novel 
method called C2C state transformation modelling38 to facilitate the estimation 
of attention-task connectomes and to improve behavioural predictions from 
resting-state data alone. In the previous analyses, we examined the generalizability 
of CPMs across multiple attention tasks. However, predictions of individual 
scores are typically impaired when the cognitive state of testing samples’ fMRI 
data is different from the training samples. The C2C framework generates task 
connectomes from the rest connectome or movie-watching connectome, and by 
employing the C2C approach, we can improve individual behavioural predictions 
from the rest or movie connectome38.

The C2C model works in three steps in model application. First, the model 
extracts sub-systems from the whole-brain resting-state connectome of individuals. 
The model, then, transforms the extracted sub-systems to estimate task-specific 
sub-systems. Finally, the model constructs whole-brain task-specific connectomes 
from estimated sub-systems. The C2C modelling is based on two PCAs and partial 
least-squares regression, each of which have been used in fMRI connectivity studies 
for various purposes such as noise removal, dimension reduction and multivariate 
regression25,84,85. In model construction, the C2C model first defines and extracts 
state-specific sub-systems and their scores separately for the resting-state and 
task-related state using two PCAs. We applied one PCA on the rest connectomes of 
individuals in the training set. This corresponds to the first step of the C2C model 
described above. We applied another PCA separately on these same individuals’ 
task connectomes. This second PCA provides a reconstruction of the whole-brain 
task connectome from the generated task sub-systems, corresponding to the third 
step of the C2C model. Then, we employed partial least-squares regression to 
estimate the transformation of sub-systems from the resting state to the task state. 
The PCA-extracted sub-system scores of the resting and task states were put into 
the regression. This corresponds to the second step.

In this analysis, we constructed three C2C models to predict whole-brain 
connectomes of the three attention tasks from the rest connectomes. We assessed 
the success of task connectome generation in ten-fold CV. We held out one 
fold (nine or ten subjects) for model validation and used nine folds to train 
C2C models. For model validation, we calculated the similarity between the 
model-generated connectomes and observed task connectomes and the similarity 
between observed rest connectomes and observed task connectomes, using 
spatial correlation. We also estimated the root mean square difference between 
the model-generated and observed task connectomes and compared it with a 
difference between the observed rest and task connectomes. Finally, we used the 
model-generated task connectomes to predict individual behaviours in the three 
attention tasks. We compared the prediction accuracy of the C2C-generated task 
connectomes with the accuracy of the observed rest connectomes. Here, CPMs and 
C2C models were trained in the same training partition of ten folds and tested in 
the held-out fold simultaneously. We ran the same C2C modelling and comparison 
procedure using movie data.

Building a general attention model. To maximize the practical utility of our suite 
of attention prediction models described above, we developed a general attention 

model that integrates the multiple task connectomes, CPM and C2C model to (1) 
define a general attention connectome and generate it from a rest connectome and 
(2) predict overall attention performance in novel individuals.

The first step for model training was to generate for each participant a 
general attention connectome that combines the edges from the individual’s three 
attention task connectomes. There are several methods for doing so, described 
at the end of this section, and we chose the method that selects the edge with the 
highest absolute strength across the three tasks. To do this consistently across 
individuals, we first computed a group-average attention task connectome by 
averaging the edge strength from all the training participants for each edge in 
each task connectome. Then to select which task edge to use for the general 
attention connectome, we compared the absolute mean strength for each edge 
across the three average task connectomes. For example, if the average gradCPT 
connectome showed the maximum absolute strength for a particular edge, relative 
to the absolute edge strength in the other average task connectomes (MOT and 
VSTM), then we assigned the gradCPT edge strength to be the representative 
edge in the general attention connectome look-up table (Supplementary Fig. 9), 
which specifies which of the task edges to use. Then for each participant, we used 
this population-level general attention connectome look-up table to generate the 
individual’s general attention connectome as a mosaic of the empirical edge values 
pulled from the individual’s three task connectomes.

The resulting individual general attention connectome can then be fed into 
the CPM and C2C pipeline like any other individual connectome. We trained 
one CPM to predict the common attention factor from the representative general 
connectome. We also trained one C2C model that can estimate an individual 
general attention connectome from novel rest connectomes. Once trained, the 
general attention model, combining the general connectome construction, CPM 
and C2C model, can predict a novel participant’s overall attention performance 
from a single rest connectome. This model was constructed and validated using 
1,000 repetitions of ten-fold CV.

We explored different variants of ways to build the general attention model, 
and the primary model described above was chosen based on simplicity and 
performance, although performance did not vary significantly between models. To 
combine the task connectomes into the general attention connectome, one could 
average the edges, concatenate the three task connectomes, choose task edges that 
showed the largest variance across participants or choose task edges that showed 
the maximum absolute strength for each participant (without consistency across 
them). These different methods showed only small numerical differences in 
performance, with the averaging method showing the lowest performance. Finally, 
we tried predicting behaviour using three inner linear regressions to predict the 
three task scores and then average them for the general measure. This method 
performed similarly to the primary model. We tested all the different combinations 
of these modelling choices and settled on the primary model described above 
because of its simplicity compared with the other models, again noting that the 
prediction performance of the different model parameter choices was similar.

External validations in four independent datasets. Lastly, we substantially 
validated the proposed general attention model in four independent external 
validation datasets, three locally obtained (from the greater New Haven area) 
and two publicly available (total N = 495). Testing a model using one or more 
independent datasets is necessary given the large variance occurring in small-size 
samples and could boost a model’s reliability and practical utility19,40. The four 
datasets comprised rest connectomes and diverse attention-related measures. Since 
the three local datasets were obtained in previous works and the other two datasets 
were provided by different open data-sharing projects, we briefly describe each 
dataset below.

The first set included the gradCPT performance of 25 participants (13 female, 
mean age 22.7 years, range 18–32 years)14. Task performance was assessed by d′ 
sensitivity. The second set includes the ANT performance of 41 participants (28 
female, mean age 23.7 ± 4.3 years, range 18–37 years)24. Task performance was 
assessed by correct-trial RT variability. Imaging data from these two datasets 
were acquired using similar parameters, including 1,000 ms repetition time, to the 
current study but pre-processed differently. All participants in the two datasets 
gave written informed consent in accordance with the Yale University Human 
Subjects Committee and were paid for their participation. Information on subject 
recruitment, task design and rest fMRI acquisition and processing is described in 
detail in previous work14,24,25.

The third was the HCP dataset43. Information on fMRI acquisition and 
processing, and subject selection, is described in detail elsewhere22,86,87. In the 
current study, we used the SCPT performance of 316 participants (154 female, 
mean age 28.5 ± 3.73 years, range 22–36 years) who completed all fMRI and 
behavioural sessions and were not related to one another (taking into account a 
family structure). Task performance was assessed by median RT for true-positive 
trials. The experimental protocol was approved by the Institutional Review Board 
at Washington University in St. Louis. All participants provided informed consent. 
The fourth was a dataset provided by the ADHD-200 consortium45. Information 
on fMRI acquisition and processing, and subject selection, is described in detail in 
the previous study14 and at http://fcon_1000.projects.nitrc.org/indi/adhd200/. In 
the current study, we used the ADHD-RS-IV score44 of 113 children and adolescent 
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(35 female, mean age 11.8 ± 2.0 years, range 8–16 years) from the Peking University 
site. Of these, 75 participants were typically developing controls and 38 participants 
had ADHD diagnoses. Each participant’s parent provided informed consent, and 
all children agreed to participate in the study. The data collection was approved 
by the Research Ethics Review Board of the Institute of Mental Health of Peking 
University.

The attentional measures were z-scored in each dataset. We reversed the sign 
of z scores of the ANT repetition time RT, SCPT RT and ADHD-RS so that a 
higher score represents better attention performance. In the ADHD-200 dataset, 
we restricted our predictive network to 229 nodes by removing nodes missing in 
this dataset, resulting in 26,106 (=228 × 229/2) unique edges in each connectome. 
Otherwise, the gradCPT-based CPM, the rest-based CPM trained to predict the 
gradCPT score and the general attention model were identical to the models tested 
internally, but trained using the full internal samples (n = 92). To have a clear view 
on what the general model adds, we directly compared the general model with the 
two best performance models (task fMRI- and rest fMRI-based CPMs predicting 
gradCPT performance) in the current study and sustained attention CPM (saCPM, 
https://github.com/monicadrosenberg/Rosenberg_PNAS2020)14. The saCPM 
was originally constructed using fMRI and performance in gradCPT14. That is, 
the saCPM is conceptually the same as the gradCPT-based CPM (model 1 in the 
current study), but built on the first external dataset. Since the saCPM was defined 
in the first external dataset, we examined its external performance only in the 
second to fourth external datasets.

We externally validated these four models in the four independent datasets 
where attentional function was measured by diverse attention-demanding tasks or 
ADHD-RS. Model performance was assessed by prediction q2 and correlation r. We 
assessed the significance of model performance using 1,000 permutations where 
null predictions were tested in each permutation. The variable data collection, 
analysis procedures, measures of attention and age groups across multiple studies 
and sites enabled rigorous tests of a model’s generalizability. That is, if our general 
attention model successfully predicts attentional scores across the diverse datasets, 
then it emphasizes our model’s broad practical applicability.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw task and rest fMRI data used in the primary analyses (n = 92) are available at 
https://doi.org/10.15154/1520622.

Code availability
Scripts for the predictive model (the general attention model, C2C model and 
CPM) construction are available for download at https://github.com/rayksyoo/
General_Attention. Scripts for the other (statistical) analyses are available from the 
corresponding author upon request.
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Extended Data Fig. 1 | Predictive anatomy of three task-based CPMs. a. The scale bar in gradCPT, MOT and VSTM represents the relative ratio of 
predictive functional connections to all possible number of functional connections between networks with a sign representing whether the connection 
is in a positive or negative network. The scale bar in overlap represents the actual number of predictive functional connections with a sign representing 
whether the connection is in a positive or negative network. GradCPT: gradual-onset continuous performance task, MOT: multiple object tracking, and 
VSTM: visual short-term memory. MF: medial-frontal network, FP: frontoparietal network, DM: default mode network, VI: visual I, VII: visual II, VAs: visual 
association, SA: salience network, Subc: subcortex, Cbl: cerebellum. b. The number of predictive connections of three task-based CPMs in positive and 
negative networks.
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Extended Data Fig. 2 | Cross-prediction results of five common attention factor CPMs. a. Cross-prediction results when models were applied to predict 
the common attention factor from different fMRI data. Models’ prediction accuracies were assessed by prediction q2 and correlation r between observed 
and predicted common factor measures. P values of significance were obtained using 1,000 permutations and corrected for all 5×5 tests (***: p < 0.001,  
**: p < 0.01, *: p < 0.05, and ~: p < 0.1). Rows represent different fMRI data used to predict a common attention factor used in model construction, and 
columns represent the same but in model validation. b. Cross-prediction results, taking into account shared variance (the common factor) between  
task behaviors. Models’ prediction accuracies were assessed by partial correlation between observed and predicted behavior scores while controlling  
for the shared variance. P values of significance were obtained using 1,000 permutations and corrected for all 5×9 tests (***: p < 0.001, **: p < 0.01,  
*: p < 0.05, and ~: p < 0.1). Rows represent different fMRI data used to predict a common attention factor used in model construction, and columns 
represent combinations of fMRI data and behavior scores used in model validation. GradCPT: gradual-onset continuous performance task, MOT: multiple 
object tracking, and VSTM: visual short-term memory.
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Extended Data Fig. 3 | A similarity of individual behaviours between different tasks. The similarity was assessed by Pearson’s correlation of individual 
performances between attention tasks. Individual behaviors were significantly correlated between every pair of tasks. GradCPT: gradual-onset continuous 
performance task, MOT: multiple object tracking, and VSTM: visual short-term memory.
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Extended Data Fig. 4 | Cross-prediction results of task-specific CPMs. a. Cross-prediction results, taking into account shared variance between task 
behaviors. Models’ prediction accuracies were assessed by partial correlation between observed and predicted behavior scores while controlling for  
the shared variance. P value was obtained using 1,000 permutations and corrected for multiple tests (***: p < 0.001, **: p < 0.01, *: p < 0.05, and  
~: p < 0.1). Rows represent combinations of fMRI data and behavior scores used in model construction, and columns represent combinations of fMRI data 
and behavior scores used in model validation. GradCPT: gradual-onset continuous performance task, MOT: multiple object tracking, and VSTM: visual 
short-term memory. b. Cross-prediction results when models were applied to predict the common attention factor from different fMRI data. Models’ 
prediction accuracies were assessed by correlation between observed and predicted common factor. P value was obtained using 1,000 permutations and 
corrected for all 9×5 tests (***: p < 0.001, **: p < 0.01, *: p < 0.05, and ~: p < 0.1). Rows represent combinations of fMRI data and behavior scores used in 
model construction, and columns represent different fMRI data used to predict a common attention factor used in model validation.
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Extended Data Fig. 5 | Cross-prediction using connectivity between the frontoparietal (FP, 2), visual II (VII, 6), salience (SA, 8), subcortical (Subc, 9), 
cerebellar (Cbl, 10) networks. Prediction of a model using connectivity between the medial-frontal (1), default mode (3), motor (4), visual I (5), visual 
association (7) networks was also obtained as a control. A. Rows represent combinations of networks (indicated by numbers) used in each model. Models’ 
prediction accuracies were assessed by correlating model-predicted and observed behavioral scores. B. Prediction performance of each network obtained 
by averaging all models that used the network in A. C. The same result as A, but model accuracies were assessed by q2. D. Prediction performance of 
each network obtained by averaging all models that used the network in C. GradCPT: gradual-onset continuous performance task, MOT: multiple object 
tracking, and VSTM: visual short-term memory.
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Extended Data Fig. 6 | Similarity between C2C model-generated task connectomes and empirical task connectomes. Error bar represents standard 
deviation from 1,000 iterations. A and C represent a spatial similarity between two connectomes assessed by Pearson’s correlation. Darker bars represent 
the similarity between empirical task and generated task connectomes, and lighter bars represent the similarity between empirical task and empirical rest 
connectomes. The higher similarity of the generated connectome indicates that the C2C model accurately generates the target task connectome from the 
rest connectome. B and D represent root mean square (RMS) difference between two connectomes. The smaller difference of the generated connectome 
indicates that the C2C model accurately generates the target task connectome from the rest connectome. In a box-whisker plot, a box covers the first to 
third quartile (q1 and q3, respectively) of the data, and a center line represents the median. A red dot represents the mean. Whisker covers approximately 
99.3% of data (±2.7*standrad deviation), extended to the most extreme point that is not an outlier. A data point is considered an outlier if it is greater 
than q3+1.5*(q3-q1) or less than q1-1.5*(q3-q1). GradCPT: gradual-onset continuous performance task, MOT: multiple object tracking, and VSTM: visual 
short-term memory. *: p < 0.001 from 1,000 permutations.
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Extended Data Fig. 7 | The general attention connectome lookup table. Out of a total 30,135 edges, 10,885 (36.1%) edges were pulled from gradCPT, 
12,542 (41.6%) edges were from MOT, and 6,708 (22.3%) were from VSTM. The Ratio map was obtained based on All map. In each within- or 
between-network element in Ratio, the number of edges in the element for each task was counted and normalized by the total number of edges of each 
task. A task with the highest normalized value was assigned.
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Extended Data Fig. 8 | Scatter plots of predicted and observed attention scores in four external datasets. Three models, the general attention model 
and two single task models (model 1 and 4 in Table 1) were trained within the internal dataset and then applied to rest connectomes in the four datasets. 
If a fitted line closely passes the origin (0,0) with a positive slope (staying within white quadrants), the model could be considered successfully predicting 
actual attentional abilities. There was no constraint on intercepts in fitting a line. The general model best generalized to predict various attentional 
measures in four independent external datasets.
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Extended Data Fig. 9 | Prediction error, assessed by mean square error (MSE), of the general attention model in four independent datasets. The general 
model significantly reduced prediction error (assessed by MSE) compared to null models in four datasets. In all datasets, the general attention model 
produced the lowest prediction error among all models tested. ***: p < 0.001, **: p < 0.01, *: p < 0.05, and ~: p < 0.1 from 1,000 permutations.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Psychtoolbox-3 in MATLAB R2016b was used to present visual stimuli and to record responses in task fMRI.  PsychoPy2 (version:1.85.3) was 
used to present a movie in movie-watching fMRI.

Data analysis All fMRI data were preprocessed using AFNI_17.2.07. 
All connectivity analyses and predictive modeling were performed using custom scripts in MATLAB R2016b.  Scripts for the predictive model 
construction are available for download at https://github.com/rayksyoo/GeneralAttention.  Scripts for the other (statistical) analyses are 
available from the corresponding author (K. Yoo) upon request.  

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Raw task and rest fMRI data used in the primary analyses are available at https://dx.doi.org/10.15154/1520622 (NDA, The National Institute of Mental Health Data 
Archive).
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study is based on original data collection and model development.  Participants performed three attention-related tasks (gradual 
Continuous Performance Task [gradCPT], Multiple Object Tracking [MOT], and Visual Short Term Memory [VSTM]) during fMRI 
acquisition.  We obtained fMRI and behavioral data from these tasks across two 90 minute sessions.  Based on this dataset, we 
developed models that predict brain-based measures of shared and specific components of attention. The model predictions were 
further validated on several, independent data sets.

Research sample The main research sample in this study includes Yale university undergraduates and graduates and volunteers in surrounding New 
Haven area. All 127 participants (80 female, ages 18 to 35 years, mean =23.15, SD = 4.43) were healthy individuals with normal or 
corrected-to-normal vision. The study sample was chosen to represent a young adult population.  External validation datasets 
included four independent sets.  Two sets were previously published datasets (Rosenberg et al., 2016. Nature Neuroscience; 
Rosenberg et al., 2018. Journal of Cognitive Neuroscience) and two sets were publicly available datasets (http://
fcon_1000.projects.nitrc.org/indi/adhd200, Consortium, 2012. Frontiers in System Neuroscience; Human Connectome Project, Van 
Essen et al., 2013. NeuroImage)

Sampling strategy Based on preliminary data, we performed a power analysis to predetermine a sample size of 84 participants at .8 power.  The current 
sample size (92 participants analyzed, and 127 participants in total) is high relative to other single-site studies in the neuroimaging 
literature.

Data collection All participants were asked to participated in a two-session fMRI study.  They were asked to sign a consent form and fill out a safety 
checklist before each session.  They were informed about task instructions before going into a scanner.  MR images were collected 
using Siemens Prisma 3T scanner.  During MR imaging, participants used earplugs and noise-cancelling headsets.  All behavioral 
responses in visual attention-related tasks were obtained using a button box in participant’s right hand.  In the second session, 
participants were asked to fill out two questionnaires using pen and paper after MR scanning.  As part of our MRI safety protocols, a 
main researcher and a secondary assistant were present to collect data.  The researcher and an assistant were aware of the 
experimental conditions during data collection.

Timing The data collection started on September 2017 and completed on January 2020.  During the first period (before January 2019), data 
were obtained at the Yale Magnetic Resonance Research Center.  During the second period (after March 2019), data were obtained 
at the Brain Imaging Center at Yale University.

Data exclusions As detailed in the manuscript, among 127 participants, we excluded 35 participants due to excessive head motion (>3 mm maximum 
head displacement and >0.15 mm mean framewise displacement) during fMRI scanning, task performance lower or higher than 2.5 
standard deviations from the group mean in both sessions, or low imaging data quality by a visual quality control check.

Non-participation Seven participants completed the first session, but withdrew from the study or did not show up for the second session.

Randomization The order of three tasks was counterbalanced across participants and sessions.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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Human research participants
Policy information about studies involving human research participants

Population characteristics See above

Recruitment Participants were recruited via flyers attached to local and school bulletins. The flyer was neutrally phrased to minimize self-
selection bias. The flyer describes our study as follows: Completing simple computer-based tasks, such as viewing and making 
decisions about pictures, while having your brain scanned using fMRI.  The session lasts for approximately 2 hours.

Ethics oversight Yale University Institutional Review Board.  

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Magnetic resonance imaging

Experimental design

Design type Two fMRI sessions. Separate runs for three task fMRI, resting-state fMRI, and movie-watching fMRI in each session.  
Task fMRI runs were continuous event-related.

Design specifications Per run, gradCPT fMRI included 740 trials, MOT fMRI included 56 trials, and VSTM fMRI included 160 trials.  All three 
task trials are continuous without inter-trial intervals; trial lengths were 0.8 s (gradCPT), 10.3 s (MOT), and 3.6 s (VSTM). 
All task runs were about 10 minutes in length without interruption, unless for any technical issues.

Behavioral performance measures In this study, we recorded button press (Yes/No) and response time.  Task performance was assessed with sensitivity 
(d’), accuracy (%), and working memory capacity (Pashler’s K) for gradCPT, MOT, and VSTM, respectively.  We excluded 
participants whose task performance was 2.5 standard deviations lower or higher than the group mean for each task.

Acquisition

Imaging type(s) Functional and structural images

Field strength 3T

Sequence & imaging parameters MPRAGE was collected at the beginning of each session with the following parameters:  TR = 1800 ms, TE = 2.26 ms, flip 
angle = 8°, acquisition matrix = 256 × 256, in-plane resolution = 1.0 mm^2, slice thickness = 1.0 mm, 208 sagittal slices.   
All EPI data was collected with the following parameters: TR = 1,000 ms, TE = 30 ms, flip angle = 62°, acquisition matrix = 
84 × 84, in-plane resolution = 2.5 mm^2, 52 axial-oblique slices parallel to the AC-PC line, slice thickness = 2.5 mm, 
multiband 4, acceleration factor = 1.  

Area of acquisition A whole brain scan

Diffusion MRI Used Not used

Preprocessing

Preprocessing software AFNI_17.2.07.  1) Removing the first three volumes; 2) censoring of volumes containing outliers in more than 10% of voxels; 
3) censoring of volumes for which the Euclidean norm of the head motion parameter derivatives are greater than 0.2 mm; 4) 
despiking; 5) slice-time correction; 6) motion correction; 7) regression of mean signals from the cerebrospinal fluid, white 
matter, and whole brain and 24 motion parameters.

Normalization FMRI data were normalized to the MNI 152 standard space. FMRI data were aligned to the high-resolution anatomical image 
(MPRAGE) using affine registration and then normalized to the MNI space by non-linear transformation.

Normalization template MNI 152 standard space template

Noise and artifact removal Noise removal included regression of mean signals from the cerebrospinal fluid, white matter, and whole brain and 24 
motion parameters (3 translational and 3 rotational, their derivatives, and square terms of the 6 motion parameters and their 
derivatives).

Volume censoring AFNI_17.2.07.  We censored volumes containing outliers in more than 10% of voxels and volumes for which the Euclidean 
norm of the head motion parameter derivatives were greater than 0.2 mm.

Statistical modeling & inference

Model type and settings A whole-brain connectivity matrix with 29,890 unique edges (245 nodes) was constructed using preprocessed fMRI data for 
each state (tasks, rest, and movie) and for each participant.  We constructed connectome-based predictive models (Shen et 
al., 2017. Nature Protocols), connectome state transformation models (Yoo et al., 2020. bioRxiv preprint) and a general 
attention model that predict individual behaviors from the whole-brain connectivity matrix.
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Effect(s) tested Effect of fMRI cognitive states on behavior prediction was examined.  As described above, fMRI data was obtained while 

participants were performing gradCPT, MOT, or VSTM, watching a movie, or at rest.  Hence, five different cognitive states 
were tested.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
268-node parcellation covering the whole brain was used (Shen et al., 2013. NeuroImage) to construct 
the whole-brain functional connectivity matrix.  After exclusion, 245 nodes were used in the main 
analyses.

Statistic type for inference
(See Eklund et al. 2016)

To evaluate model performance, we used Pearson's correlation and prediction q^2 (cross-validation R^2, Sheinost et al., 
2019. NeuroImage).  

Correction Permutations were used for significance testing, correcting for multiple tests (family-wise error rate).  The details are 
provided in Methods section 'Significance testing of prediction accuracy with correction for multiple tests'.

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Pearson's correlation coefficient r was used to measure functional connectivity.  Correlation r was z-scored 
using Fisher's r-to-z transformation, and the z-scored connectivity was used in all predictive modeling. 

Multivariate modeling and predictive analysis All connectome-based predictive models (CPM) were trained to predict individuals' behavioral task 
performance from their whole-brain connectivity matrix (connectome).  In a general attention model, 
connectome-to-connectome (C2C) state transformations were trained to predict individuals' task-related 
connectomes from their resting-state connectomes.  In C2C, principal component analysis was applied to the 
whole-brain connectomes for dimension reduction and to extract subsystems for each state (resting-state 
state and task-related state), separately.  Then, partial least square regression was trained to predict 
individuals' task-related connectomes from their resting-state connectomes. 
For CPMs and the general model, prediction accuracy was evaluated by Pearson's correlation between 
observed and predicted behaviors and by prediction q^2 (cross-validation R^2, Scheinost et al., 2019. 
NeuroImage) based on normalized mean square error.  For C2C models, prediction accuracy was evaluated 
by Pearson's correlation between observed and predicted task-related connectomes and by root mean 
square difference between them. 
All predictive modeling and their evaluation were performed in MATLAB R2016b.
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