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A B S T R A C T   

We only remember a fraction of what we see—including images that are highly memorable and those that we 
encounter during highly attentive states. However, most models of human memory disregard both an image’s 
memorability and an individual’s fluctuating attentional states. Here, we build the first model of memory syn-
thesizing these two disparate factors to predict subsequent image recognition. We combine memorability scores 
of 1100 images (Experiment 1, n = 706) and attentional state indexed by response time on a continuous per-
formance task (Experiments 2 and 3, n = 57 total). Image memorability and sustained attentional state explained 
significant variance in image memory, and a joint model of memory including both factors outperformed models 
including either factor alone. Furthermore, models including both factors successfully predicted memory in an 
out-of-sample group. Thus, building models based on individual- and image-specific factors allows for directed 
forecasting of our memories. 
Significance statement: Although memory is a fundamental cognitive process, much of the time memory failures 
cannot be predicted until it is too late. However, in this study, we show that much of memory is surprisingly pre- 
determined ahead of time, by factors shared across the population and highly specific to each individual. Spe-
cifically, we build a new multidimensional model that predicts memory based just on the images a person sees 
and when they see them. This research synthesizes findings from disparate domains ranging from computer 
vision, attention, and memory into a predictive model. These findings have resounding implications for domains 
such as education, business, and marketing, where it is a top priority to predict (and even manipulate) what 
information people will remember.   

1. Introduction 

We remember some items that we encounter in our day-to-day lives 
with ease. For example, we may recall a painting that we saw in a 
museum long after our visit. At the same time, we often fail to remember 
other, similar items, such as the wall art in a doctor’s office. Despite the 
fact that what items go on to be remembered or forgotten can seem 
arbitrary, our memory is not completely unpredictable. 

Intuitively, it seems that what we go on to remember should be 
largely determined by processing that occurs during and after encoding. 
However, recent work has discovered two factors that determine our 
memories ahead of time. First, individuals collectively show strong 
agreement in which images they will remember. That is, certain images 
are intrinsically memorable or forgettable (Bainbridge, Isola, & Oliva, 

2013; Isola, Xiao, Torralba, & Oliva, 2011). At the same time, each in-
dividual exhibits idiosyncratic moment-to-moment sustained attention 
dynamics, and the attentional state leading up to the moment of 
encoding impacts subsequent memory (deBettencourt, Norman, & Turk- 
Browne, 2018). This suggests, for example, that we’re unlikely to 
remember a forgettable art piece or recall an exhibit encountered after 
our sustained attention had faded during a long museum visit. Neither 
memorability nor sustained attention, however, feature in most models 
of visual memory. 

By testing many individuals on diverse stimulus sets, studies of visual 
memory have revealed striking consistency in the pictures that are 
remembered or forgotten (Bainbridge et al., 2013; Isola, Parikh, Tor-
ralba, & Oliva, 2011; Isola, Xiao, et al., 2011; Isola, Xiao, Parikh, Tor-
ralba, & Oliva, 2014). In other words, ahead of time, we can make 
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predictions about which specific images will be remembered. This 
widespread consistency implies that memorability is a property inherent 
to an image itself. This memorability can be quantified through 
continuous recognition tasks, in which participants detect specific 
stimulus repeats in a stream of images. Certain images, i.e., high 
memorability images, are much more likely to be correctly detected in 
these tasks. Importantly, a memorability score measured in one exper-
iment has been shown to successfully translate across other tasks, par-
ticipants, image contexts, and delays (e.g., Bainbridge, 2020; Broers, 
Potter, & Nieuwenstein, 2018; Goetschalckx, Moors, & Wagemans, 
2018). Furthermore, memorability is not simply a product of an item’s 
low-level visual features (color, texture, shape, orientation, or spatial 
frequency) alone, nor is it a product of attractiveness or visual interest. 
Instead, it is distinct from other visual factors (Bainbridge, 2019; Bain-
bridge et al., 2013) and unaffected by reward and cognitive control 
(Bainbridge, 2020). In sum, research on image memorability emphasizes 
that individuals’ memories are enhanced for specific stimuli over others. 

By tracking individuals’ behavior over time, on the other hand, 
studies of sustained attention have revealed how fluctuating attentional 
states impact what is later remembered (Barel & Tzischinsky, 2020; 
deBettencourt et al., 2018; Madore et al., 2020; Song, Finn, & Rosen-
berg, 2021). That is, when attention is lapsing, we can predict that the 
forthcoming image will be disadvantaged. Changes in sustained atten-
tion from one moment to the next can be measured via continuous 
performance tasks (CPTs), in which participants repeatedly make the 
same response to the vast majority of stimuli, but then must make a 
different response to a rarely presented stimulus. Sustained attentional 
states can be operationalized via behavioral performance on such a task, 
with lapsing attentional states indexed by measures such as misses 
(incorrect responses to infrequent target trials), false alarms (incorrect 
responses to frequent nontarget trials), and faster and more prepotent 
responses (deBettencourt, Cohen, Lee, Norman, & Turk-Browne, 2015; 
deBettencourt, Keene, Awh, & Vogel, 2019; Robertson, Manly, Andrade, 
Baddeley, & Jenny, 1997; Rosenberg, Noonan, DeGutis, & Esterman, 
2013). In sum, research on sustained attention emphasizes that an in-
dividual’s memories are enhanced for images that appear in engaged 
attentional states. 

Although image memorability and sustained attentional state are 
each important for what we remember, no work to date has combined 
these two factors. Do external image features common across the pop-
ulation (like memorability) and internal mental states idiosyncratic to 

individuals (like sustained attention) explain unique variance in what 
we remember? Can we make honed predictions of what people will 
remember based on the memorability of a given image and their sus-
tained attentional state during that time? To ask these questions, we 
built a model of visual long-term memory that leverages the influence of 
both image memorability and individual sustained attentional state. In 
Experiments 1 and 2 we collected new data to measure image memo-
rability and participant sustained attention and memory, respectively. In 
Experiment 3 we reanalyzed existing data measuring participant sus-
tained attention and memory to test the replicability of the results found 
in Experiments 1 and 2. 

Leveraging these memorability scores and behavioral measures of 
attentional states at each moment, we combined data across experi-
ments to build a model of subsequent memory. Specifically, the model 
predicted whether images are remembered or forgotten based on image 
memorability scores and response time (RT) signatures of trial-to-trial 
fluctuations in attention. Results revealed that image memorability 
and sustained attentional state uniquely predicted memory, and 
together explained more variance in what people remembered than 
either factor alone. Thus, armed only with the memorability of an item 
and measures of someone’s attentional state, we can successfully predict 
what individuals will go on to remember using these two factors pre-
viously described in completely separate literatures. 

2. Methods 

We used data from three experiments to characterize the distinct 
contributions of image memorability and sustained attentional state to 
subsequent memory (Fig. 1). In Experiment 1, we ran a large-scale 
crowd-sourced online experiment to derive the intrinsic memorability 
of 1100 scene images. In Experiment 2, we collected data as participants 
performed a CPT and subsequent recognition memory test with these 
images. In Experiment 3, we re-analyzed data from a study in which 
different participants performed a CPT and subsequent recognition 
memory test with the same images. Data from Experiments 2 and 3 were 
collected in different research labs at different universities. We then 
asked whether the intrinsic memorability of images themselves 
(Experiment 1)—and participants’ attentional state during the CPT 
(Experiments 2 and 3)—uniquely predicted subsequent image memory 
(Fig. 2). 

Fig. 1. a. The goal of Experiment 1 was to obtain memorability 
scores for a large set of real-world scene images. Participants 
completed a continuous recognition task to respond whenever 
an image repeated. Targets represented a second presentation 
of the same image separated by at least 30 s. b. The goal of 
Experiments 2 and 3 was to determine how stimulus-specific 
(image memorability) and individual-specific (attentional 
state) factors influenced long-term memory. These experiments 
consisted of two parts: a continuous performance task and a 
subsequent memory task. In the first part, participants cate-
gorized these same scene images by pressing one button to 
frequent (e.g., indoor; 90%) and another button to infrequent 
(e.g., outdoor; 10%) images. The RTs to the prepotent response 
(e.g., indoor) indexed their moment-to-moment attentional 
state. In the second part, participants performed a surprise 
subsequent memory task in which they reported recognition 
memory on a 4-point confidence rating scale for new and old 
indoor and outdoor images.   
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2.1. Stimuli 

All experiments used 1100 color scene images from the Scene UN-
derstanding database (SUN; Xiao, Hays, Ehinger, Oliva, & Torralba, 
2010). These images depicted a wide variety of representative real- 
world scenes, including 550 indoor scenes and 550 outdoors scenes. 
All images were cropped to be square and resized to 256 × 256 pixels. 

2.2. Experiment 1 

We measured the intrinsic memorability of 1100 color scene images 
in an online crowd-sourced experiment. 

2.2.1. Participants 
We recruited 808 adults from the United States via the online 

experimental platform Amazon Mechanical Turk (AMT). Participants 
(360 female; mean age = 39.3, range = 20–76 years) were compensated 
$0.70 for participation for the approximately seven-minute experiment. 
Participants were required to have at least a 98% AMT approval rate, 
500+ completed tasks, and an IP address in the United States. The 
experiment was preceded by three basic English screening questions and 
followed by a task instruction question to ensure quality of the data. 706 
participants successfully completed the task, while the other 102 par-
ticipants were excluded from the final sample because they did not 
complete the task, failed a periodic vigilance check, or answered at least 
one of the four screening questions incorrectly. Participants were 
recruited until we obtained 50 memory responses per stimulus, deter-
mined by prior studies as a sufficient number of participants to estimate 
a stable image memorability score (Isola et al., 2014). Participants 
provided consent in accordance with procedures approved by the Uni-
versity of Chicago Institutional Review Board (IRB). 

2.2.2. Procedure 
Participants completed a continuous recognition task (Fig. 1a; 

Experiment 1), in which 136 images appeared for 750 ms each with an 
800 ms interstimulus interval (Bainbridge et al., 2013; Khosla, Raju, 
Torralba, & Oliva, 2015). Images were presented centrally against a 
white background. Participants were instructed to press the ‘r’ key when 
they encountered an image that was previously shown. 44 images were 
selected to be “target images” and repeated once during the task, at least 
30 s (14 trials) apart. Non-target “filler images” were shown in between 
target images and a subset of them repeated in quick succession (1–5 
images apart). These filler repeats were easily detectable by participants 
and served to maintain task vigilance. Participants who failed over 70% 
of the vigilance task repeats were excluded from the data analyses. 
Target and filler images were randomly sampled from the larger 1100 
stimulus set, so that every image in the set served as a target image for at 
least 50 participants. 

During the continuous recognition task, responses to each image 
were recorded. Correct identification of a repeated target image was 

considered as a “hit” and failure to identify a repeated target image was 
considered as a “miss”. Misidentification of the first presentation of a 
target as a repeat was classified as a “false alarm”. We only analyzed 
responses to target images for each participant. 

2.2.3. Image memorability measure 
For each image, we calculated hit rate (the proportion of target re-

peats successfully identified) and false alarm rate (the proportion of first 
image presentations falsely identified) across individuals. Memorability 
scores for each image were calculated as the corrected recognition rate 
(CR) by subtracting the mean false alarm rate from the mean hit rate 
across participants. 

To test whether image memorability was reliable across individuals, 
we conducted a consistency analysis in which CR was correlated be-
tween random split-halves of participants (Isola, Xiao, et al., 2011). A 
Spearman rank correlation was conducted across 1000 random partici-
pant split-halves, and then the correlations were averaged across itera-
tions, resulting in an average across-participant consistency score. The 
across-participant consistency score was compared to a permuted 
chance level in which Spearman rank correlations were conducted be-
tween randomly shuffled split-halves. This analysis tests whether 
different groups of participants tend to consistently remember and 
forget the same images. 

2.3. Experiment 2 

The goal of this study was to ask whether image memorability and 
sustained attentional state predict subsequent memory. To this end, we 
next collected measures of attentional state as individuals performed a 
continuous performance task (CPT) using the same 1100 scene images 
characterized in Experiment 1. We also collected subsequent recognition 
memory performance for these images. 

2.3.1. Participants 
Thirty-seven participants aged 18–35 years (mean age = 24.5) were 

recruited via the University of Chicago Sona participant recruitment 
system and compensated $10 for their participation. Three participants 
were excluded before data analysis because they were not right-handed 
or did not have normal or corrected-to-normal color vision. One addi-
tional participant was excluded due to CPT performance >3 SDs below 
the mean, resulting in a final sample size of 33 participants. This number 
of participants was based on the first sample in a previously published 
study on sustained attention and memory (deBettencourt et al., 2018). 
Participants provided written informed consent in accordance with 
procedures approved by the University of Chicago IRB. 

2.3.2. Apparatus 
Participants were seated approximately 48 cm from a CRT monitor 

with a 60 Hz refresh rate. Stimuli were presented using MATLAB 
(MathWorks, Natick, MA, USA) and the Psychophysics Toolbox v3.0.16 

Fig. 2. Modeling subsequent memory with memorability and 
sustained attention. a. A depiction of memorability and sus-
tained attention during the experiment. Memorability is 
plotted along the y-axis, ranging from low (gray) to high (red). 
Attentional state is plotted along the x-axis, ranging from low 
(gray) to high (blue). Each trial is indicated as a black dot, and 
successive trials are connected by the black line. Each trial 
could thus be characterized by these two dimensions, the 
memorability of the image or its attentional state. b. Schematic 
of our model in which subsequent memory is determined by 
two independent factors: memorability and sustained 
attention.   
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(Brainard, 1997; Pelli, 1997). Image stimuli subtended approximately 
9.3◦ of visual angle on the screen. A centrally presented fixation dot 
subtended approximately 0.4◦. 

2.3.3. Procedure 
Participants completed a CPT to assess sustained attention to the 

images from Experiment 1 (Fig. 1b; Experiments 2 & 3). During the 8:20- 
min task, each participant viewed 500 trial-unique scene images from 
the larger set of 1100. Each image was displayed for 1000 ms with no 
interstimulus interval. Images were presented in the center of a gray 
background. A black fixation dot was overlaid on the center of the image 
and turned white after each response. 

Of the images shown, 90% (450 images) were from a frequent 
stimulus category (e.g., outdoor scenes) and 10% (50 images) were from 
an infrequent category (e.g., indoor scenes). Frequent and infrequent 
categories were counterbalanced across participants and images were 
randomly selected within each category. Participants were asked to 
categorize each image as an indoor scene or an outdoor scene. They were 
instructed to press “h” on the keyboard with their right index finger 
when an image belonged to the frequent category and “j” with their right 
middle finger when an image belonged to the infrequent category. 
Participants completed a short practice block (10 trials) prior to begin-
ning the full task and repeated this practice block as necessary until they 
achieved at least 90% accuracy. 

The CPT provided a measure of each individual’s attentional state on 
every trial, indexed by their RT. Previous work using this task demon-
strated that fast RTs index worse attentional states and predict lapses, 
whereas slow RTs index better attentional states (deBettencourt et al., 
2018). 

Immediately after completing the CPT, participants performed a 
surprise recognition memory task (self-paced; approximately 20 min; 
Fig. 1b; Experiments 2 & 3) for the images. During the task, participants 
viewed 200 images: 100 from the frequent category and 100 from the 
infrequent category. Half of these images were from the CPT (“old” 
images) and half had not previously appeared (“new” images). In other 
words, memory was tested for 50/450 frequent category images and 50/ 
50 infrequent category images seen in the CPT. Image assignment to 
these old vs. new conditions was random across participants and images 
were presented in a randomized order. Participants were instructed to 
indicate their memory and confidence that each image had appeared in 
the CPT on a scale of 1–4. A response of “1” indicated high confidence 
that the image had not appeared in the CPT and a response of “4” 
indicated high confidence that the image had appeared in the CPT. Each 
image remained on the screen until the participant responded, with no 
maximum presentation time. After each response, the image and the 
confidence rating were displayed for 500 ms before the next image 
appeared. 

2.3.4. Sustained attention and subsequent memory measures 
A participant’s sustained attentional state on each infrequent image 

category trial i was operationalized as pre-trial RT. To calculate pre-trial 
RT, we first detrended by calculating a linear fit over all RTs over the 
entire block and subtracting that from the raw RTs to control for time- 
dependent effects such as practice or fatigue. By subtracting a linear 
trend, this also effectively recenters our RTs relative to each partici-
pant’s mean RT. Then, we calculated a trailing window of the RT, by 
averaging RT over the three preceding trials (trials i-3 to i-1). Analyses 
focused on infrequent category trials, which provide an interrogation of 
sustained attentional state because participants are required to switch 
from a habitual response to respond correctly. 

To measure subsequent memory, correct high-confidence “old” re-
sponses (a response of “4”) were treated as remembered whereas all 
other responses were treated as forgotten (e.g., Kim, Lewis-Peacock, 
Norman, & Turk-Browne, 2014; Wagner et al., 1998). Only high- 
confidence old responses were treated as remembered because previ-
ous work has shown that high confidence hit rates are greater than high 

confidence false alarm rates whereas the difference between low con-
fidence hit rates and low confidence false alarm rates only approaches 
significance, suggesting that a significant proportion of low confidence 
responses are guesses (Turk-Browne, Yi, & Chun, 2006). 

2.4. Experiment 3 

Experiment 3 was a reanalysis of data previously reported in the 
second experiment of (deBettencourt et al., 2018). The goal of that study 
was to solely investigate the relationship between attention and 
memory. 

2.4.1. Participants 
Twenty-five undergraduates (15 female; mean age = 19.2 years) 

were recruited from Princeton University and compensated with college 
course credit. One participant was excluded from analysis due to sus-
tained attention task performance >3 SDs below the mean. The final 
sample size, n = 24, included all participants who were included in 
previous analyses of these data. All participants reported normal or 
corrected-to-normal color vision and provided written informed consent 
in accordance with guidelines approved by the Princeton University IRB. 

2.4.2. Apparatus 
Participants were seated approximately 70 cm from a CRT monitor 

with a 100-Hz refresh rate. Stimuli were presented using MATLAB 
(MathWorks, Natick, MA, USA) and the Psychophysics Toolbox (Brai-
nard, 1997; Pelli, 1997). Images subtended approximately 7◦ and the 
fixation dot subtended approximately 0.1◦ on the screen. 

2.4.3. Procedure 
Experiment 3 procedures were identical to those described in 

Experiment 2 save one key difference. In Experiment 3, infrequent im-
ages did not always appear randomly during the CPT. Rather, the order 
of trial types (frequent vs. infrequent) was determined in real-time based 
on participants’ RTs. Infrequent category images were inserted in the 
task if participants were responding one standard deviation faster or 
slower than their cumulative mean RT up to that point in the task. The 
intention was that this “triggering” would allow for exploration of sus-
tained attention in extreme attentional states, when participants were 
very attentive or very inattentive. It was expected that there would be an 
even greater difference in subsequent memory for these triggered trials, 
as the response times preceding infrequent category images were more 
polarized than they were in Experiment 2. Up to 40 infrequent trials 
could be triggered (20 based on fast RTs, 20 based on slow RTs) during 
trials 51–450 of the CPT, and the other 10 trials were randomly inserted 
during trials 1–50 and 450–500. Fast and slow RT thresholds were 
computed using a “growing window” to compute cumulative mean RT 
after removing linear drift. There was a minimum of three frequent trials 
between infrequent trials to avoid contaminating the moving-window 
RT measure. The average number of infrequent trials per participant 
during the real-time period was 18.35 (SD = 5.64) for slow-triggered 
trials and 13.25 (SD = 2.08) for fast-triggered trials. Participants were 
not informed of this real-time triggering procedure. 

2.4.4. Sustained attention and subsequent memory measures 
Sustained attentional state (average pre-trial RT from the three 

preceding trials) and subsequent memory (high confidence hits) were 
measured in the same way as in Experiment 2. 

2.5. Data analysis 

2.5.1. Mixed-effects models 
Generalized logistic regressions were used to predict subsequent 

memory (correct vs. incorrect) from two independent variables: (1) the 
CR memorability score of each image (from Experiment 1) and (2) pre- 
trial RT of each participant before they encountered each image during 
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the CPT (from Experiments 2 and 3; Figs. 1 & 2). In other words, the 
fixed effects of the model were image memorability and sustained 
attentional state. We compared the results of models that did and did not 
include an interaction term between image memorability and sustained 
attentional state. Intercepts for experiment and participants nested 
within experiment were included as random effects. Image memora-
bility and sustained attention factors were z-scored within-participant to 
allow for comparison of beta values for each predictor across-and 
within-individuals. The same models without standardization show no 
difference in significance of each predictor but prevent the direct com-
parison of each predictor (Supplementary Material). The mixed-effects 
model formula was as follows: 

subsequent memory ∼ image memorability + attentional state+
(1 | experiment/participant)

subsequent memory corresponds to the binary memory performance 
metric during the surprise memory task in Experiments 2 and 3, image 
memorability corresponds to the CR for each image calculated from 
Experiment 1, and attentional state corresponds to pre-trial RT in the CPT 
in Experiments 2 and 3. 

Mixed effects models were implemented using R’s lme4 package 
(Bates, Kliegl, Vasishth, & Baayen, 2015), and model optimization was 
performed with the limited-memory Broyden–Fletcher–Goldfarb–Shanno 
algorithm (Byrd, Lu, Nocedal, & Zhu, 1995) with the optimx package 
(Nash & Varadhan, 2011). Root-mean-square error (RMSE) was calcu-
lated as a measure of absolute error using the sjstats package in R 
(https://CRAN.R-project.org/package=sjstats). 

2.5.2. Within-participant logistic regression models 
Is long-term memory more dependent on intrinsic stimulus memo-

rability for some participants, but attentional state at encoding for 
others? To ask this question, we ran within-participant analyses to 
determine the predictive power of image memorability and sustained 
attention for each individual. Within-participant analyses used gener-
alized logistic regressions to predict the binary subsequent memory 
variable for each participant in Experiments 2 and 3. As with the mixed- 
effects model analyses, memory predictions were made using the 
memorability of each image and the preceding RT index of sustained 
attention at encoding for each infrequent category image. The interac-
tion between sustained attention and memorability was not included as 
a predictor, as it was found to be non-significant in the across- 
participants mixed-effects model. The effects of experiment and partic-
ipant nested within experiment were not included in these regressions 
because each model was fit to a single participant’s data. Image 
memorability and sustained attention factors were z-scored within- 
participant. Thus, the within-participant model formula was as follows: 

subsequent memory ∼ image memorability+ attentional state 

The mathematical formula for this logistic regression model was: 

P(Yi = 1) =
exp(β0 + βMMi + βAAi)

1 + exp(β0 + βMMi + βAAi)

Mi and Ai represent memorability and attentional state, respectively, 
for a trial i. We solve for βM and βA, the coefficients for memorability and 
attentional state, respectively, as well as the intercept β0. Within- 
participant logistic regression models were implemented using R’s glm 
function, which is based on Fisher scoring (iteratively reweighted least 
squares). 

2.5.3. Across-dataset predictions 
To characterize the robustness and replicability of models predicting 

subsequent memory from image memorability and attentional state, we 
built models to predict memory using data from Experiment 2 and 
Experiment 3 separately. We then applied the model built in Experiment 
2 to data from Experiment 3 to generate a prediction for each trial and 

vice versa. We assessed models’ predictive power by computing the 
within-participant point-biserial correlation between predicted memory 
accuracy and true memory accuracy (where true memory accuracy 
could be 1 [remembered] or 0 [forgotten]) for every individual. For each 
experiment, we submitted Fisher z-transformed within-participant cor-
relation coefficients to a one-sample t-test to assess group-level 
significance. 

We conducted permutation tests to further inspect the robustness of 
the results. In these permutation tests, we compared cross-experiment 
model performance to a null distribution of performance values. We 
estimated this distribution by randomly shuffling subsequent memory 
accuracy within-subject in the test set (i.e., Experiment 2 data for the 
model trained on Experiment 3 and tested on Experiment 2; Experiment 
3 data for the model trained on Experiment 2 and tested on Experiment 
3). We then correlated predicted memory scores with these shuffled 
observed memory scores within-subject, Fisher z-transformed the 
within-subject correlation coefficients, averaged these values across 
participants, and converted the average value back to Pearson r. We 
repeated this process 10,000 times to generate 10,000 null mean r 
values, separately for the model trained on Experiment 2 and tested on 
Experiment 3 and the model trained on Experiment 3 and tested on 
Experiment 2. We calculated a permutation (i.e., non-parametric p- 
value) as p = (1 + number null mean r values ≥ true mean r value)/ 
10,001 (Supplementary Material). 

2.5.4. Statistics 
To compare the predictive power of image memorability and sus-

tained attention for subsequent memory and effects of interest between 
groups, we calculated t-statistics, effect sizes, and Bayes factors where 
appropriate. All t-tests are two-tailed and assume equal variance be-
tween groups. Cohen’s d statistics were calculated with the effsize 
package in R as a measure of effect size. Bayes factors (BF) were 
computed with the BayesFactor package in R and are reported as mea-
sures of relative evidence in favor of the alternative or null hypothesis. 
Bayes factors >3 indicate substantial evidence in favor of the alternative 
hypothesis, whereas Bayes factors <1/3 indicate substantial evidence in 
favor of the null (Wetzels et al., 2011). All data and code are available in 
a repository on the Open Science Framework (https://osf.io/6uc48/). 

3. Results 

3.1. Validating measures of image memorability and attentional state 

3.1.1. Image memorability is reliable across individuals 
We first asked whether there were specific scene images in our 

stimulus set that were more memorable or forgettable across in-
dividuals. To evaluate the consistency of corrected recognition (CR) 
performance for images in the continuous recognition task (Fig. 1a), we 
correlated the values for specific scene images obtained from different 
split-halves of the Experiment 1 Amazon Mechanical Turk sample (n =
706). Consistent with prior work, image memorability was highly reli-
able (mean Spearman’s rank correlation across 1000 split halves: ⍴ =
0.35, 95% CI [0.32, 0.38], non-parametric p < 0.001; Fig. 3a). In other 
words, in our online sample, individuals tended to remember and forget 
the same images. 

3.1.2. Pre-trial RT predicts attention lapses 
We next asked whether RTs in the CPT reliably indexed attentional 

state in Experiment 2 (n = 33) and Experiment 3 (n = 24). To do so, we 
calculated a measure of pre-trial attentional state operationalized as the 
detrended RT before each infrequent trial, by first subtracting the linear 
trend across the entire block and then averaging the three preceding 
trials. We compared whether the pre-trial RT differed prior to attention 
lapses (incorrect responses to infrequent category trials) than non-lapses 
(correct responses to infrequent category trials). Consistent with prior 
work, participants’ mean pre-trial RT was slower preceding correct vs. 
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incorrect infrequent images in Experiment 2 (mean pre-trial RT differ-
ence = 0.048 s [0.037, 0.059], t32 = 9.05, p < 0.001, Cohen’s d = 2.19) 
and Experiment 3 (mean difference = 0.117 s [0.094, 0.140], t23 =

10.33, p < 0.001, Cohen’s d = 2.49). Thus, in these two independent 
datasets, pre-trial RT is a reliable measure of attentional state in that it 
predicts lapses (Fig. 3b). 

3.2. Predicting subsequent memory from image memorability and 
attentional state 

Each image presented in Experiments 2 and 3 can be operationalized 
via its memorability (obtained via online data collection from the 
separate pool of participants in Experiment 1) and sustained attentional 
state (obtained at each moment from each participant in Experiments 2 
and 3). Can we use these image-specific measures of memorability and 
individual-specific measures of attentional state to predict what in-
dividuals will go on to remember (Fig. 2)? 

3.2.1. Image memorability and attentional state uniquely predict 
subsequent memory 

To understand the consequences of memorability and sustained 
attention for subsequent memory, we created separate mixed-effects 
models for each factor after collapsing across data from both Experi-
ments 2 and 3. First, a model based on image memorability alone 
significantly predicted subsequent memory (Table 1). In addition, a 
model based on attentional state alone also significantly predicted 
subsequent memory (Table 1). That is, independent models using each 
factor reliably predict memory. 

Although we see this relationship collapsing across the studies, we 

were also interested in demonstrating replicability within each inde-
pendent dataset. Therefore, we next examined the influence of image 
memorability and attentional state on subsequent memory by building 
separate models using data from Experiments 2 and 3 (Fig. 4). First, 
image memorability (M) remained a significant predictor of subsequent 
memory for both Experiment 2 (βM = 0.32, SEM = 0.06, zM = 5.75, pM <

0.001) and Experiment 3 (βM = 0.22, SEM = 0.07, zM = 2.95, pM =

0.003). Attentional state (A) also remained a significant predictor of 
subsequent memory for both Experiment 2 (βA = 0.12, SEA = 0.05, zA =

2.23, pA = 0.026) and Experiment 3 (βA = 0.18, SEA = 0.07, zA = 2.40, 
pA = 0.016). That is, the influence of memorability and attention on 
memory behavior was reliable across the two datasets. 

3.2.2. Memorability and attentional state maintain unique contributions in 
a combined model of memory 

Do image memorability and attentional state explain unique or 
overlapping variance in subsequent memory? To ask this question, we 
built a combined additive model including both image memorability 
and attentional state as predictors of subsequent memory. This model 
included data from both Experiment 2 and 3 to maximize power. Results 
revealed that both memorability and attentional state still predicted 
subsequent memory in this combined model (Table 1; Fig. 4). This 
pattern of results remained consistent when the interaction between 
image memorability and attentional state was included as a predictor in 
the model, with no significant effect of the interaction itself (Table 1). 
Results were also consistent in additive models built using data from 
Experiment 2 (βM = 0.33, SEM = 0.06, zM = 5.83, pM < 0.001; βA = 0.13, 
SEA = 0.06, zA = 2.43, pA = 0.015) and Experiment 3 (βM = 0.22, SEM =

0.07, zM = 2.93, pM = 0.003; βA = 0.18, SEA = 0.07, zA = 2.38, pA =

Fig. 3. Validating measures of memorability and attentional state. a. High consistency in the memorability of images. Random participant split-halves (Group 1 and 
Group 2) tend to remember and forget the same images (as measured by CR score), in comparison to a permuted chance level (gray). Lines in these plots show 
average memory performance (y-axis) across 1000 iterations, for each image ranked from highest to lowest CR score (x-axis). b. Pre-trial reaction time predicted 
lapses within both Experiment 2 (dark blue) and Experiment 3 (light blue). Faster response time is indicative of an individual being in a worse attentional state, while 
slower response time is indicative of a participant being in a better attentional state. Each gray dot represents an individual participant, with lines connecting data 
from the same participant. The height of the bar indicates the mean. 

Table 1 
Results of mixed effects logistic regression models using image memorability, sustained attentional state, or both to predict subsequent image memory. Models 
included data from both Experiment 2 and 3 to maximize power. Intercepts for experiment and participants nested within experiment were included as random effects. 
Image memorability and sustained attention factors were z-scored within-participant to allow for comparison of beta values for each predictor across and within- 
individuals.   

Single factor model Joint model  

Memorability Sustained attention Without interaction term With interaction term  

Mem. Attn. Mem. Attn. Mem. Attn. Mem. Attn. Mem.*Attn. Interaction 

β 0.29 – – 0.14 0.29 0.15 0.29 0.15 0.063 
SE 0.04 – – 0.04 0.04 0.04 0.05 0.04 0.05 
z 6.37 – – 3.23 6.43 3.35 6.36 3.33 1.39 
p-value < 0.001 – – 0.0013 < 0.001 < 0.001 < 0.001 < 0.001 0.17 
RMSE 0.449 0.451 0.447 0.447 
Akaike Information Criterion (AIC) 3182.3 3213.4 3173.1 3173.2  
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0.017) separately. They were additionally consistent in interactive 
models built using data from Experiment 2 (βM = 0.33, SEM = 0.06, zM =

5.80, pM < 0.001; βA = 0.13, SEA = 0.06, zA = 2.41, pA = 0.016; βinteract 
= 0.04, SEinteract = 0.06, zinteract = 0.76, pinteract = 0.45) and Experiment 
3 (βM = 0.21, SEM = 0.07, zM = 2.81, pM = 0.005; βA = 0.18, SEA = 0.07, 
zA = 2.38, pA = 0.017; βinteract = 0.10, SEinteract = 0.07, zinteract = 1.35, 
pinteract = 0.18) separately. 

We examined model fits using AIC, which assesses model fit while 
penalizing model complexity. Based on AIC, the best performing model 
in the sample collapsed across experiments was the additive model 
combining image memorability and sustained attentional state, fol-
lowed by the interactive model including image memorability, sustained 
attentional state, and their interaction. Because overall model fit was 
numerically worse for the interactive than the additive joint model (AIC: 
3173.2 vs. 3173.1), we focus on the additive model in the remainder of 
the text. The next-best performing model was the model utilizing 
memorability alone and then the model utilizing attention alone 
(Table 1). A likelihood ratio test comparing the joint and single-factor 
models demonstrated that the additive model significantly out-
performed the memorability-only model (χ2 = 11.236, p < 0.001) and 
the attention-only model (χ2 = 42.294, p < 0.001). That is, these data 
reveal that while behavior was influenced by both memorability and 
attentional state, memorability appeared to exert a stronger influence in 
this task. 

3.2.3. Low trial-by-trial influences of memorability on current attentional 
state 

Although memorability and attentional state predicted unique vari-
ance in subsequent memory performance, it is possible that these two 
factors could also interact. To examine these potential interactions, we 
first tested whether image memorability on a given trial would imme-
diately impact attentional state on that trial. We correlated the memo-
rability score for each image with the linearly-detrended RT to that 

image and repeated this analysis separately for each participant. To 
eliminate trials contaminated by errors and response switching, we 
restricted this analysis to correct trials from the frequent category in the 
CPT, although results fully replicated when examining all trials (Sup-
plementary Material). We observed numerically small Spearman rank 
correlations between the memorability of an image and the measured 
attentional state to that image (Exp 2: mean within-participant ⍴ =
0.031, range: [− 0.16, 0.11]; Exp 3: mean within-participant ⍴ = 0.0079, 
range: [− 0.090, 0.092]). Group-level t-tests comparing Fisher z-trans-
formed Spearman rho values to zero revealed a significant relationship 
between RT and memorability in Experiment 2 (t32 = 3.06, p = 0.004, 
Cohen’s d = 0.53, BF = 8.68) but not in Experiment 3 (t23 = 0.75, p =
0.46, Cohen’s d = 0.15, BF = 0.28). In other words, participants on 
average responded more slowly (i.e., were more attentive) to more 
memorable images in Experiment 2 but not in Experiment 3. Future 
work can explore this intriguing (albeit inconsistent) result and inves-
tigate whether more memorable images may subtly modulate sustained 
attention fluctuations. In either case, the low correlation between trial- 
by-trial memorability and attention, in combination with the signifi-
cance of both memorability and attention as predictors in combined 
mixed effects models, demonstrates that memorability and attention are 
not redundant predictors of subsequent memory. 

3.3. Predicting memory at the level of the individual 

Although a model combining all participants showed significant 
contributions of both image memorability and sustained attentional 
state to subsequent memory, we also wanted to examine these factors at 
the level of individual participants. Within-participant logistic regres-
sion models revealed that memory in Experiment 2 was significantly 
predicted by both image memorability (mean within-participant β =
0.38 [0.24, 0.52], t32 = 5.39, p < 0.001, Cohen’s d = 0.94) and attention 
(mean within-participant β = 0.12 [0.016, 0.22], t32 = 2.36, p = 0.025, 
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Fig. 4. Modeling visual memory a. Modeling the influence of 
memorability on subsequent memory. We related image 
memorability (operationalized as corrected recognition score 
from Experiment 1, z-scored across images and within in-
dividuals) to subsequent recognition memory with mixed ef-
fects logistic regression. Regression estimates for individual 
participants are depicted for both Experiment 2 (dark red) and 
Experiment 3 (light red). The black line represents the average 
regression estimate from the model that combines across all 
participants from both experiments. b. Modeling the influence 
of attentional state on subsequent memory. We related atten-
tional state (operationalized as pre-trial RT from the preceding 
three images, z-scored within individuals) to subsequent 
recognition memory with mixed effects logistic regression. 
Regression estimates for individual participants are depicted 
for both Experiment 2 (dark blue) and Experiment 3 (light 
blue). The black line represents the average regression estimate 
from the model that combines across all participants from both 
experiments. c. Joint model of memorability and attention for 
subsequent memory. We depict the multidimensional topog-
raphy of subsequent recognition memory determined jointly 
from memorability and attentional state. Red colors indicate 
regions where image memorability supports memory, blue 
colors indicate regions where attention supports memory, and 
purple indicates regions where both factors support memory. 
The slope of the curve corresponds to the average regression 
estimates, combining across all participants from both 
experiments.   
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Cohen’s d = 0.41). When conducting logistic regression models within 
participants for Experiment 3, we also observed a reliable relationship 
for both memorability (β = 0.25 [0.053, 0.44], t23 = 2.64, p = 0.015, 
Cohen’s d = 0.54) and attention (β = 0.26 [0.063, 0.47], t23 = 2.72, p =
0.012, Cohen’s d = 0.55). That is, both memorability and attention 
remained reliable at the individual participant level in both studies. 

3.3.1. Examining the relative contributions of memorability and attentional 
state 

While both memorability and attention reliably predicted memory 
within participants, we were also interested in quantifying the relative 
influence of each factor on memory. We observed that the coefficient for 
memorability was significantly stronger than the coefficient for sus-
tained attention in Experiment 2 (mean difference in β = 0.26 [0.010, 
0.43], t32 = 3.28, p = 0.0025, Cohen’s d = 0.75, BF = 14.39; Fig. 5a). 
However, we did not observe this difference in Experiment 3 (mean 
difference in β = − 0.019 [− 0.28, 0.24], t23 = − 0.15, p = 0.88, Cohen’s d 
= − 0.04, BF = 0.22). In fact, this may reveal an interesting difference 
between the two studies. The trial structure of Experiment 3 was spe-
cifically designed to boost the influence of attention on memory, by 
presenting certain trials during particularly high or low attentional 
states (see Methods for detail). This suggests the exciting possibility that 
through careful experiment design we may be able to manipulate the 
relative influences of attention or memorability. 

We were further interested in examining memorability and attention 
interactions from person to person. One possibility is that the same in-
dividuals tend to demonstrate a strong influence of both memorability 
and attention. If so, then the coefficients for memorability and attention 
will be correlated across participants. Conversely, individuals whose 
memories are driven by attentional fluctuations may be less influenced 
by the memorability of the images (or vice versa), predicting a negative 
correlation between these factors across participants. Finally, memora-
bility and attention may represent independent dimensions for later 
memory, and then we would not necessarily predict a relationship across 
participants. To test these hypotheses, we correlated the coefficients for 
memorability and attentional state across participants. Interestingly, 
neither experiment revealed a reliable relationship between the co-
efficients (Exp 2: ⍴ = 0.078, p = 0.67; Exp 3: ⍴ = 0.22, p = 0.29; Fig. 5b). 
This provides further evidence that memorability and attention have 
dissociable influences on memory. 

3.3.2. These factors remain consistent regardless of individual differences in 
memory 

Memorability and attentional state predicted memory across the 
population. Was this effect driven by individuals with overall better 
memory? That is, do image memorability and/or attentional state better 
predict memory for individuals who better remember task stimuli 
overall? To ask this question, we separately examined individuals with 
better and worse recognition memory performance (defined via median 
split within experiment). In data collapsed across Experiments 2 and 3, 

mixed-effects models including both memorability and attention pre-
dicted subsequent memory in both the better-memory group (βM = 0.31, 
SEM = 0.06, zM = 5.18, pM < 0.001; βA = 0.18, SEA = 0.06, zA = 2.60, pA 
= 0.0094) and the worse-memory group (βM = 0.26, SEM = 0.07, zM =

3.85, pM < 0.001; βA = 0.14, SEA = 0.07, zA = 2.14, pA = 0.032). Within- 
participant coefficients did not differ between groups (Exp 2: memora-
bility: t31 = − 0.03, p = 0.97, BF = 0.33; attention: t31 = 0.73, p = 0.47, 
BF = 0.41; Exp 3: memorability: t22 = 1.26, p = 0.22, BF = 0.66; 
attention: t22 = − 0.33, p = 0.74, BF = 0.39), with Bayes factors 
providing anecdotal evidence in favor of the null hypothesis. This sug-
gests that individuals did not likely achieve better memory performance 
by relying more heavily on image memorability and/or attentional state. 

3.4. Across-sample prediction with this model 

Up to this point, we have discussed how both memorability and 
attentional state are reliable, robust, and independent predictors of 
subsequent memory. A model of human memory relying on these factors 
would be most useful if it could generalize across datasets and be used to 
make predictions for unseen, out-of-sample data. To assess the gener-
alizability of models, we developed a model of subsequent memory from 
one dataset (e.g., Experiment 2) and applied it to the other dataset (e.g., 
Experiment 3) and vice versa. If these models of subsequent memory 
successfully generalize, then we would expect successful prediction 
between these datasets. Alternatively, if models do not successfully 
generalize, this suggests that the models are relying upon information 
specific to each experiment (e.g., differences in individuals or tasks). We 
trained a logistic regression model to predict subsequent memory on 
data from Experiment 2 and applied it to data from Experiment 3. Then, 
we correlated the model-predicted and true memory performance for 
each participant and examined whether these correlations were signif-
icant at the group level. Indeed, a model derived from data from 
Experiment 2 successfully predicted memory in Experiment 3 (mean 
within-participant r = 0.13 [0.05, 0.20], t23 = 3.44, parametric p =
0.0022, permutation p = 0.0005, Cohen’s d = 0.70, BF = 17.50). 
Furthermore, we replicated these findings by training on data from 
Experiment 3 and applying it to data from Experiment 2 (mean within- 
participant r = 0.15 [0.09, 0.20], t32 = 5.36, parametric p < 0.001, 
permutation p < 0.0001, Cohen’s d = 0.93, BF = 2922.41). Thus, models 
trained on memorability and attentional state generalize across inde-
pendent datasets—collected at different institutions with different 
participant samples and different experimental procedures—to predict 
memory. 

4. Discussion 

What affects our long-term memories? We posited that certain fac-
tors are highly specific to the information to be encoded, but shared 
across individuals, whereas other factors may be highly specific to in-
dividuals, regardless of what information is being encoded. To 

Fig. 5. Examination of memorability and 
attention within participants. a. Coefficients 
for memorability (blue) and attention (red) 
both independently reliably predict subse-
quent memory in Experiments 2 and 3. Each 
gray dot represents an individual partici-
pant’s beta coefficients on a given factor 
resulting from the within-participant logistic 
regression. The height of the bar indicates 
the population mean. b. Individual differ-
ences in memorability and attention. Corre-
lation between the degree to which sustained 
attention and memorability predict subse-
quent memory, separately for Experiment 2 
(dark purple) and 3 (light purple). Gray re-
gions indicate the 95% confidence interval.   
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characterize both image- and individual-specific factors that impact 
what we remember, we built a model that predicted visual long-term 
memory from an image’s memorability and an individual’s moment- 
to-moment attentional state. We computed memorability scores for a 
large set of real-world images using a large crowd-sourced online 
experiment. We then combined these image memorability scores with a 
behavioral index of sustained attention measured in a continuous per-
formance task. Results revealed that image memorability and sustained 
attention uniquely predicted subsequent memory in two independent 
datasets. That is, images that are more memorable and/or that appeared 
during a better attentional state were more likely to be remembered. 
Furthermore, models including both memorability and attention better 
predicted recognition memory than models including either factor 
alone. Thus, memory is best considered a function of what information is 
presented when to whom, and models that only consider one or the 
other factor (or neither) will fail to fully explain what we remember. 

4.1. Dissociable influences of memorability and attentional state 

In building a model of memory, we determined that memorability 
and attentional state each independently predict what information is 
later remembered. Interestingly, we did not find clear evidence of a 
trade-off of the influence of memorability and attention on subsequent 
memory. That is, it was not the case that people for whom memory was 
more heavily influenced by attention state were less heavily influenced 
by image memorability or vice versa. Furthermore, the weight of each 
factor did not differ between participants with overall better or worse 
memory; in other words, it was not the case that individuals who used 
more attention-based or memorability-based strategies showed higher 
performance. Finally, we observed no consistent relationship between 
the two factors within individuals: People responded more slowly to 
more memorable images in one dataset but not the other. This result 
partially aligns with prior work reporting that memorability effects are 
not influenced by bottom-up or top-down attention (Bainbridge, 2020). 
Importantly, however, our experiments were not designed to specifically 
investigate individual differences in memory or the factors predicting it. 
Future work can more powerfully explore how individuals rely on 
different external and internal factors, and how these factors predict 
memory for different stimuli in a variety of tasks. Overall, these results 
highlight the critical importance of considering both attention and 
memorability when modeling memory. 

4.2. Predicting memory in multiple datasets 

A strength of this work is that it leverages multiple datasets collected 
both online and in person at multiple institutions to ensure that findings 
are replicable and generalizable. Even though memorability scores were 
recorded from an online sample (Experiment 1), they predicted memory 
performance in two entirely different participant samples (Experiments 
2 and 3). For Experiments 2 and 3, although the task paradigms were 
largely similar, trials in Experiment 3 were presented in non-random 
order to specifically target extremely attentive or inattentive states. 
Despite these differences in paradigm, participants, and institution, re-
sults were largely similar, and—demonstrating robustness and repli-
cability—models defined in one experimental sample generalized to 
predict memory in the other. Additionally, because cross-dataset com-
parison is an extremely conservative test of model generalizability, 
capturing even a modest statistically significant proportion of the vari-
ance is theoretically impactful. 

4.3. Influence of memorability vs. attentional state 

Although we observed robust evidence of both attention and 
memorability effects on memory, there were hints that, at least within 
these datasets, memorability exerted a stronger effect. In the mixed- 
effects model, the model with a memorability factor better fit the data 

than the model with an attention factor. We did not find that one factor 
significantly outperformed the other across both datasets, but the in-
fluence of memorability was numerically greater in both samples and 
reliably so in Experiment 2. We found similar trends in Experiment 3, 
but these results were less reliable likely due to task manipulations 
which targeted more extreme attentional states and thus may have 
boosted the relative contributions of sustained attention. This suggests 
that stimulus features have an impressively strong influence over our 
later memories, equal to or even stronger than our level of engagement 
at any given moment. 

4.4. Other measures of sustained attention and memorability 

In this experiment, we exclusively operationalized sustained atten-
tion via RT. While this measure of attentional state is robust and strongly 
predictive of lapses, research has also characterized sustained atten-
tional states via other measures of behavioral task performance, 
including response time variability (Fortenbaugh et al., 2015; Rosenberg 
et al., 2013) and task accuracy (Decker, Finn, & Duncan, 2020). Sus-
tained attentional states can be further characterized using a variety of 
physiological measures including pupil size (Keene, deBettencourt, 
Awh, & Vogel, 2021), EEG patterns (deBettencourt, Williams, Vogel, & 
Awh, 2021), and fMRI connectivity patterns (Song & Rosenberg, 2021). 
Similarly, while the current study operationalizes memorability as CR, 
prior work has shown high consistency across individuals in their hit 
rates and false alarm rates (Bainbridge et al., 2013), as well as eye- 
movement patterns (Bylinskii, Isola, Bainbridge, Torralba, & Oliva, 
2015). Memorability can also be predicted by deep learning neural 
networks (Khosla et al., 2015; Needell & Bainbridge, 2022) and results 
in specific fMRI patterns in visual and mnemonic areas of the brain 
(Bainbridge, Dilks, & Oliva, 2017; Bainbridge & Rissman, 2018). Future 
work could explore how these different behavioral and physiological 
signatures of sustained attention and memorability interact with 
memory. 

4.5. Other external and internal factors 

Although the current work characterizes the contribution of two 
important and understudied factors to memory, the RMSE of the logistic 
regression model including image memorability and sustained atten-
tional state is 0.45, suggesting that further improvements in memory 
predictions are possible. Other research has highlighted the role of other 
external (stimulus-specific) and internal (person-specific) factors that 
influence long-term memory, including image context (e.g., Bodrogi & 
Tarczali, 2001), emotional state (e.g., Murray, Holland, & Kensinger, 
2013), and prior experiences and familiarity (e.g., Yonelinas, Kroll, 
Dobbins, & Soltani, 1999). The current work thus introduces a useful 
framework for characterizing the contribution of multiple predictors of 
memory, which can be applied to understand the variance in memory 
explained by each. Future studies could expand the model introduced 
here by integrating these factors to even more comprehensively model 
and characterize the suite of factors that act on memory with unique (or 
overlapping) contributions. 

4.6. To what degree is memory predetermined? 

One key similarity between memorability and attentional state is 
that they can both be quantified prior to the presentation of the stimulus. 
By the time you encounter a striking painting in a museum or an unin-
spiring piece of wall art in a doctor’s office, the properties of the image 
are already set, and you are already in a given attentional state. 
Therefore, our model highlights that some variance in our memory can 
be attributed to pre-established influences, rather than processes that 
only occur during and following that image presentation. Further, these 
successful predictions can be made in a relatively context-free man-
ner—we do not need to know an individual’s prior experiences (even 
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within the same experiment!) to predict their performance on a given 
trial with some degree of accuracy. 

That our memories may be partly predetermined suggests tantalizing 
possibilities for influencing and manipulating what we remember. For 
example, experimenters could select highly memorable and forgettable 
images to induce certain memories (Needell & Bainbridge, 2022), or 
monitor someone’s attentional fluctuations over time to identify the best 
time to present to-be-remembered material (deBettencourt et al., 2018, 
2019). Utilizing both approaches, one could make a particularly un-
forgettable experience, presenting memorable items when attention is 
high. Alternatively, in educational scenarios, it may be preferable to 
trade off these two factors, presenting forgettable items when attention 
is high and vice versa to maximize learning outcomes. Finally, there is 
also emerging evidence that both attentional state (deBettencourt et al., 
2015; Rosenberg et al., 2016) and memorability can be manipulated 
(Goetschalckx, Andonian, Oliva, & Isola, 2019; Khosla, Bainbridge, 
Torralba, & Oliva, 2013). We could use these approaches to modify 
either attentional state or item memorability to create videos, visual art, 
and educational content that is inherently memorable, and intentionally 
shown at attentive moments to an individual. 

In sum, visual long-term memory research has largely overlooked the 
importance of considering what we are remembering and the state we are 
in when we encounter it. However, combining the memorability of 
images, with the attentional state of individuals, we can now better 
predict what one will remember. 
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