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The ability to sustain attention differs across people and varies

over time within a person. Models based on patterns of static

functional brain connectivity observed during task performance

and rest show promise for predicting individual differences in

sustained attention as well as other forms of attention. The

sensitivity of connectome-based models to attentional state

changes, however, is less well characterized. Here, we review

recent evidence that time-varying functional brain connectivity

predicts fluctuations in attention in controlled and naturalistic

task contexts. We propose that building connectome-based

models to predict changes in attention across multiple

timescales and experimental contexts can help further

disentangle state versus trait influences on functional

connectivity patterns, elucidate the behavioral relevance of

functional connectivity dynamics, and contribute to the

development of a comprehensive suite of generalizable

neuromarkers of attention. To achieve this goal, we suggest

collecting multi-task, multi-session neuroimaging samples with

concurrent behavioral and physiological measures of

attentional state.
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Introduction
People differ in how well they sustain attention. Whereas

some individuals can attend to a task for long periods of

time, others lose focus more quickly and more often.

What aspects of brain function distinguish those of us

with better and worse sustained attention function? Work

has revealed that models based on a person’s unique

functional brain connectivity ‘fingerprint’, or pattern of
www.sciencedirect.com 
statistical dependence between brain regions’ neuroim-

aging signal fluctuations [1], predict aspects of their

attention function including sustained attention [2–4],

attentional control [5,6], distractor suppression [7], and

attentional blink task performance [8]. Model predictions

can be generated from functional magnetic resonance

imaging (fMRI) data collected during different cognitive

tasks as well as during rest, when participants are simply

instructed to lie still in the scanner and (often but not

always) view a centrally presented fixation cross.

These trait-like attention predictions, however, don’t tell

the whole story. Unlike fingerprints, functional connec-

tivity patterns change over time. Attention function also

varies, fluctuating from moment to moment with, for

example, distraction, depletion, mind wandering, moti-

vation, and engagement. Whether functional connectivity

dynamics are related to ongoing cognitive and attentional

state dynamics, however, is a topic of significant debate.

On one hand, work suggests that functional brain network

organization is dominated by trait variance [9,10��], that

functional connectivity dynamics are driven by noise and

sampling variability [11,12], and that functional connec-

tivity observed at relatively short times scales (such as

tens of minutes) does not meet standard measures of

reliability [13]. On the other hand, there is evidence that

functional networks reconfigure during tasks with differ-

ent attentional, perceptual, and cognitive demands

[14��,15] and pharmacological intervention [16,17��]. Fur-

thermore, evidence suggests that functional connectivity

measured at short time scales (tens of seconds) predicts

task state [18] and ongoing task performance [17��], and

that relationships between functional connectivity and

changes in attention task performance are observable

with intracranial electroencephalography [19�].

How do we reconcile the need for collecting significant

amounts of data to measure what are, primarily, stable

person-specific functional connectivity patterns with the

growing evidence for robust and replicable relationships

between functional connectivity dynamics and internal

state dynamics? Here we review work on connectome-

based predictors of individual differences in attention and

changes in attention over time. We focus on sustained

attention (also known as tonic alertness), the ability

maintain focus on a task or stimulus for a prolonged

period of time [20–22]. We hypothesize that sustained

attention fluctuations during task, rest, and naturalistic

contexts are ubiquitous but underappreciated, and may

explain variance in within-person changes in functional

connectivity that, without sufficiently sensitive
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Box 1 Large, open-source neuroimaging datasets.

With recent norm-shifts in cognitive neuroscience and psychology

towards data, code, and model sharing and big data approaches

[81–83], repositories are open-sourcing a large number of

individuals’ [84], or dense longitudinal sampling of several

individuals’ [14��,85], neuroimaging data. In these samples, data are

collected as participants perform different psychological tasks [86],

watch movies or listen to stories [87–90], or simply rest inside the

scanner. The Human Connectome Project [91] and Adolescent Brain

Cognitive Development Study [92], for example, include multiple

imaging sessions and tasks per participant along with out-of-scanner

measures including behavioral assessments and questionnaires.

Such open-source datasets have facilitated significant advances in

the construction of models that predict individual differences in

behavior from brain activity and connectivity patterns. Complemen-

tary work is beginning to pursue prediction of changes in cognitive

and attentional processes over time—from high-frequency fluctua-

tions within a single scan session to developmental change across

months and years—using these large datasets.
behavioral or physiological measures of attentional state

to validate them, may otherwise be characterized as noise.

To test this hypothesis, we propose collecting multi-task,

multi-session samples with concurrent behavioral and

physiological measures of attentional state (Figure 1).

Dense longitudinal phenotyping of brain and behavioral

data can help resolve the apparent tension between

mounting evidence for both stable network architecture

and cognitively meaningful network dynamics, and help

disentangle state-like from trait-like aspects of functional

brain organization.

Predicting individual differences in sustained
attention
Although there is a rich history of individual differences

research in cognitive psychology, cognitive neuroscience

research has traditionally characterized group-average

features of, or group-level differences in, brain structure

and function. However, with the growing availability of

large open-source neuroimaging datasets and advances in

resting-state fMRI and predictive modeling, scholars

have begun to characterize patterns of brain activity

and connectivity that predict individual differences in

behavior [23–26] (see Box 1).

A catalyst of work predicting individual differences from

functional brain connectivity was the discovery that an

individual’s functional connectivity pattern is stable and
Figure 1
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unique enough to serve as a ‘fingerprint’ that can identify

them from a group [1,27] and thus may be useful for

predicting trait-like aspects of behavior. Since then, work

has suggested that functional connectivity patterns not

only serve as individual identifiers but also predict phe-

notypes including fluid intelligence [1,28], sustained

attention [4], working memory [29–31], personality traits

[32–34], and clinical symptoms [35–37].
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An early example of connectome-based predictions of

individual differences asked how functional network

organization relates to individual differences in sustained

attention [4]. To address this question, researchers used

fMRI data collected during the gradual-onset continuous

performance task (gradCPT) [38] to build a connectome-

based model (see Box 2) that predicted an individual’s

overall attention task performance from whole-brain

functional connectivity patterns. Results suggested that

distributed patterns of functional connectivity predicted

unseen individuals’ performance scores. The model gen-

eralized to predict attention task performance from fMRI

data collected during rest, demonstrating that task-free

functional connectivity alone can predict sustained
Box 2 Functional connectivity-based predictive modeling.

Connectome-based predictive modeling is an approach that predicts

an outcome measure from an unseen individual from their pattern of

functional brain connectivity (see Ref. [93] for methodological detail

and [94] for ‘ten simple rules’ for practical implementation). Func-

tional connectivity reflects statistical dependence (in fMRI, typically

correlation) between the two brain regions’ blood oxygen level-

dependent (BOLD) signal time courses. When data from an entire

scan or scan session is used to generate a single connectivity matrix

for each individual, the resulting connectivity pattern is referred to as

static or time-averaged connectivity. A person’s whole-brain pattern

of static functional connectivity is sometimes called their ‘functional

connectome’ or ‘functional connectivity fingerprint’.

When performing predictive modeling, it is important that the data

used for training and testing are independent. For internal validation,

the train-and-test separation can be conducted iteratively using

cross-validation. For example, 1/k of participants’ brain-behavior

pairs can be held out for test while the rest of the participants’ data

can be used to train the model (e.g., k-fold cross-validation). On the

other hand, when an independent dataset (usually collected from a

different site with different stimulus and analysis pipelines) is avail-

able for external validation, every participant’s data in one sample is

used for model training, and the other sample for model testing.

External validation is recommended whenever possible.

After training and testing data are separated, the first step of con-

nectome-based predictive modeling is typically feature selection.

During feature selection, functional connections related to the

behavioral measure of interest (for example, those significantly cor-

related with training participants’ behavioral scores) are retained for

model building. In some cases, the feature set can be constrained

with data reduction techniques such as principal component analysis

before feature selection.

Model building can be accomplished with different approaches

including linear, partial least squares, or support vector regression

[79,95]. During model building, an algorithm of choice is applied to

map training participants’ behavioral scores (dependent variables) to

their functional connections (independent variables). The trained

model is then applied to the test set, meaning that unseen

individual’s brain features are input into the model to predict their

behavior.

Predictive model performance can be measured in multiple ways,

including mean squared error, prediction R2, and Spearman or

Pearson correlation between observed and the predicted behavioral

measures [1,4,94]. Successful prediction suggests that functional

connectivity patterns generalize beyond the training set to predict

behavior.

www.sciencedirect.com 
attentional abilities. Furthermore, the model, defined

using data from a non-clinical population of young adults,

generalized to resting-state data from an independent

sample of children and adolescents to predict symptoms

of attention deficit hyperactivity disorder (ADHD). This

finding suggests that functional brain organization con-

tains information about a person’s general ability to focus

even when attention is not actively taxed.

Complementary work suggests that individual differ-

ences in widespread functional connectivity patterns,

observed during task performance and rest, predict indi-

vidual differences in sustained attention, including

ADHD diagnoses and continuous performance task per-

formance in children [2] and stop-signal task performance

in adolescents [3]. These results suggest that an

individual’s static functional connectome may serve as

a robust neuromarker of sustained attention, a component

of attention critical in nearly every psychological task and

everyday activity.

Predicting within-individual changes in
attentional state
Although evidence suggests that functional connectivity

patterns predict overall cognitive and attentional abilities,

we know from our everyday experiences that our mental

states are constantly changing. Sustained attention, in

particular, dynamically fluctuates over time. Despite

our best attempts to maintain an optimal level of focus,

we experience lapses of attention due to factors including

distraction, mind wandering, fatigue or boredom. During

attention tasks, lapses can be characterized with behav-

ioral measures including accuracy, response time, and

response time variability (see Box 3).

The crux of predictive cognitive neuroscience now lies in

whether brain signatures can predict such evolving inter-

nal states [39,40]. Given that static functional connectiv-

ity fingerprints predict individuals’ overall sustained

attention function, do changes in these patterns also

capture changing attentional states? For example, does

a neural signature of sustained attention distinguish per-

iods when a person is optimally focused on a task versus

mind wandering or distracted? Emerging evidence sug-

gests that dynamic, or time-resolved, functional connec-

tivity may be a more sensitive marker of individual

differences than time-averaged functional connectivity

([41–43] but see Ref. [44]). In addition, preliminary

evidence also suggests that dynamic functional connec-

tivity may be a more sensitive marker of time-varying

cognitive and attentional states than multivoxel patterns

of blood oxygen level-dependent (BOLD) activity [45].

Although characterizing ongoing thoughts and internal

states with ongoing brain connectivity changes is intui-

tively appealing, there is unresolved debate about

whether functional connectivity dynamics capture
Current Opinion in Behavioral Sciences 2021, 40:33–44
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Box 3 Behavioral markers of sustained attentional abilities and

states.

Researchers have characterized an individual’s ability to maintain

focus, as well as changes in their attentional states over time, with

self-report scales [96,97], intermittent thought probes [98,99], phy-

siological recordings [100], and behavioral task performance

[38,101,102]. The most commonly used sustained attention task is

the continuous performance task (CPT). CPTs require participants to

respond to rare targets in a constant stream of stimuli (X-CPT) or

respond to all stimuli except the rare target (not-X CPT). In some CPT

variants, participants respond to targets with an alternative button

press rather than a withheld response. Stimulus presentation is

typically rapid, with a new stimulus appearing every approximately

1 s, and task duration ranges from minutes to hours.

Overall sustained attention function can be operationalized as mean

task accuracy or sensitivity (hit rate relative to false alarm rate).

Changes in attentional state and lapses can be indexed with trial-to-

trial measures of accuracy and response time (RT). In many CPTs,

slower and/or less variable RTs indicate more optimal task focus

whereas faster and more erratic response times indicate less optimal

focus [103,104]. Mid-task mind-wandering probes can help distin-

guish arousal states (which reflect a person’s available attentional

resources) from sustained attentional states (which reflect both the

available resources and how they are allocated) [20].
meaningful variability of cognition. Concerns arise from

evidence that temporal variance is largely a result of

sampling variability and head motion ([11,12], but see

Refs. [43,46–48] for work on approaches to mitigate these

problems). Furthermore, Gratton et al. [10��] showed that

task-related variance in functional network connectivity

is small compared to person-related variance, suggesting

that connectome-based modeling may be less suited to

predict state-level changes within an individual.

A large body of work, on the other hand, shows that

functional connectivity patterns are sensitive to different

task conditions as well as ongoing cognitive state differ-

ences within a task. For example, functional connectivity

observed during windows as short as 22.5 s predicts which

of several cognitive tasks an individual is performing [18].

Functional brain networks reconfigure adaptively into

functionally segregated and integrated states with cogni-

tive task demands (e.g., blocks of high and low working

memory load in the n-back task) [15] which has conse-

quences for behavioral task performance [49,50] and

learning [51]. Recent work has even suggested that func-

tional network and node boundaries themselves change

with task states [14��]. These results demonstrate that

functional brain networks flexibly reconfigure with

changes in cognition and attention, suggesting that

time-varying functional connectivity may predict ongoing

internal states.

Predicting attention changes during task performance

Supporting the idea that functional connectivity dynam-

ics in part reflect behavioral performance dynamics,

Rosenberg et al. [17��] asked whether the same functional

connectivity model that predicted individual differences
Current Opinion in Behavioral Sciences 2021, 40:33–44 
in sustained attention also predicts changes in attentional

states within an individual. This study used the validated

signature of sustained attention from previous work [4] to

predict within-individual variance in behavioral perfor-

mance across 3-min blocks of the gradCPT. Not only did

task-block functional connectivity predict task-block per-

formance, but functional connectivity measured during

rest breaks in between the blocks predicted performance

of the neighboring task blocks. In addition, the model

predicted week-to-week changes in the gradCPT perfor-

mance of a single participant scanned 30 times over the

course of 10 months [14��]. Importantly given the influ-

ence of head motion on functional connectivity, control

analyses demonstrated that successful predictions were

not driven by motion. Together these results demonstrate

that the model of sustained attention tailored to predict

individual differences also generalizes to predict periods

of betters and worse sustained attention task performance

within an individual.

Evidence suggests that a group-based model of sustained

attention generalizes to capture within-subject differ-

ences in attention. It remains an open question, however,

whether predictive models can be personalized to each

individual. For example, can we build models using

leave-one-trial-out, block-out, run-out, or session-out

cross-validation to predict attention fluctuations in single

individuals? Would such person-specific models capture

state-level variance in attentional states better than

group-based models? To begin addressing this question,

Rosenberg et al. [17��] performed a complementary anal-

ysis of the same 30-session dataset using leave-one-ses-

sion-out cross-validation. Models were trained using data

from 29 sessions and tested on data from the held-out

session. Intriguingly, this within-subject model signifi-

cantly predicted left-out sessions’ gradCPT performance

but did not outperform the original group-based model.

However, because this result is based on data from a

single person, future work with densely sampled data

from multiple individuals is needed to determine

whether tailoring person-specific models to individual

participants improves attention predictions.

Predicting attention changes in naturalistic contexts

Previous work suggests that functional connectivity

dynamics capture changes in cognitive and attentional

states during task performance. However, two primary

questions remain. First, to what degree are connectome-

based predictive models sensitive to moment-to-moment

state changes that are not explicitly demarcated with

external cues such as distinct task conditions and block

or run breaks? Second, to what degree do connectome-

based models of attention generalize to predict atten-

tional state in ecologically valid contexts—that is, outside

of traditional psychological tasks? Jangraw et al. [52] asked

participants to read transcripts of Greek history lectures

during fMRI and found that the connectome-based
www.sciencedirect.com
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Box 4 Time-resolved predictive modeling of ongoing attention and cognition.

Dynamic predictive modeling, introduced by Song et al. [45], aims to predict evolving internal states from time-varying brain patterns. Models

require dynamic measures of behavioral or physiological data as the predicted variables, time-aligned with dynamic functional connectivity

patterns from multiple individuals (Figure B1). Dynamic functional connectivity, also known as time-resolved or time-varying functional connectivity,

is commonly measured with sliding window analysis [105]. A single functional connectivity matrix is extracted by the statistical dependence of the

time-courses within a certain length of temporal window (usually ranging from 30s to 60s). The window is slid across time, and connectivity

matrices are repeatedly extracted at each window, throughout the scan duration.

As with static, or time-averaged, connectome-based predictive modeling (Box 2), data for training and testing are separated during feature

selection and model building. Input data are all training participants’ brain-behavior measures calculated at every time step. The time-courses of all

functional connections and behavioral metrics are normalized across time within each feature. Importantly, normalization is not performed across

features. This maintains within-feature temporal variance while removing across-individual and across-feature variance. The brain patterns and

behavioral value corresponding to every time point (equivalent to repetition time [TR] in fMRI) from all training participants are treated as

independent observations during model training. During model testing, the model is applied to held-out individuals’ brain data observed at every

time point to predict their behavioral time-course from their dynamic brain connectivity.

Because the outcome measure of interest is whether the model captures temporal variance in behavior rather than exact values, Pearson

correlation between observed and predicted time-courses may be the most well-suited measure of model performance. Researchers can also

consider complementary metrics including mean squared error and R2 [59��].

Figure B1
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Trait-level and state-level predictions of attention.

Static functional connectivity (top) is measured by computing the statistical dependence (e.g., correlation) between every pair of brain regions’

BOLD signal time-courses. Static functional connectivity patterns can be used to predict different aspects of attention (Box 2), including

sustained attention [2–4], distractor suppression [7], attentional control [5], or spatial attention. Dynamic functional connectivity, most

commonly measured with sliding window analysis (bottom), may be used to predict attention fluctuations indexed with time-aligned behavioral

or physiological data.
signature of sustained attention during reading predicted

performance on a post-scan comprehension test. This

work demonstrates the possibility that the functional

connectivity signature of sustained attention, when mea-

sured during a naturalistic task such as reading, reflects

aspects of attentional state consequential for comprehen-

sion. However, it remains unclear whether the same

model predicts time-varying attentional states, and
www.sciencedirect.com 
whether a model defined to predict performance on a

visual continuous performance task will generalize to

explain variance in real-world sustained attention

fluctuations.

To characterize fluctuating brain states in the absence of

explicit task switches, a growing number of neuroimaging

experiments use ‘naturalistic stimuli’ such as movies and
Current Opinion in Behavioral Sciences 2021, 40:33–44
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audio-narrated stories [53–55]. Studies have observed

synchronized functional connectivity fluctuations as par-

ticipants watched the same movies or listened to the same

stories, and showed that these fluctuations are reliably

coupled to the narrative elements of the story

[45,56,57,58�]. Betzel et al. [57], for example, showed that

moments when functional connectivity dynamics are

more synchronized across individuals correspond to

highly integrated brain states, and identified statistical

associations between functional connection synchrony

and the visual and semantic features of the movie. Van

der Meer et al. [58�] compared resting-state to movie-

viewing data and demonstrated that functional brain

network dynamics are not only richer but more synchro-

nous across people and across an individual’s repeated

sessions during movie viewing compared to rest. The

occurrences of and transitions between large-scale brain

states were explained by movie annotations and

participants’ physiological indices including heart rate

and pupil diameter, and correlated with individual differ-

ences in subjective engagement to the movies. Further-

more, Song et al. [45] characterized transitions between

functionally integrated and segregated brain states as

participants actively tried to comprehend temporally

scrambled movies, and showed that an active understand-

ing occurred during moments when participants encoun-

tered events that are causally important in the narratives.

Dynamic connectome-based predictive modeling (see

Box 4) revealed that models based on time-varying func-

tional connectivity generalized across movie stimuli to

predict unseen individual’s evolving degrees of

comprehension.

Using the same dynamic connectome-based predictive

modeling approach, recent work directly probed changes

in attentional engagement during narratives [59��]. In

behavioral studies, participants reported how engaging

they found a television episode [60] or an audio-narrated

story [61] by continuously adjusting a scale bar. Func-

tional MRI analyses revealed that time-varying functional

connectivity predicted not only fluctuating engagement,

but also post-scan recall fidelity of narrative events,

highlighting the network-level prediction of real-world

attention and memory. The predictive models general-

ized across unseen individuals and independent datasets.

Furthermore, multivariate patterns of connectivity in the

sustained attention network previously defined by Rosen-

berg et al. [4] predicted changes in attentional engage-

ment during the television episode. The sustained atten-

tion network overlapped with the network explicitly

trained to predict narrative engagement, suggesting that

distinct networks with shared subcomponents predict

attention in controlled and naturalistic contexts.

Together, this work illustrates how generalizing connec-

tome-based models to within-individual state changes in

naturalistic contexts can elucidate neural signatures of

sustained attention.
Current Opinion in Behavioral Sciences 2021, 40:33–44 
Predicting attention changes during rest

In addition to interest in predicting attention changes as

participants engage with external tasks and stimuli, there

is significant interest in relating time-varying functional

connectivity to internal states during rest—that is, in the

absence of an explicit controlled or naturalistic task. An

apparent difficulty lies in the fact that the optimal mea-

sure of a person’s internal state during a resting-state scan,

let alone dynamic changes in this state, is unclear. Nev-

ertheless, the ability to predict evolving attentional states

in the absence of an explicit psychological task could be

useful for both theoretical and practical reasons. Predic-

tion during rest could inform theories about why we can

use resting-state data to predict individual differences in

attention (e.g., by asking whether predictions are driven

by, or independent from, attentional state dynamics dur-

ing rest), contribute to understanding of the system-level

neural reconfigurations that accompany spontaneous

thoughts [62], and help reduce noise in data during

preprocessing by identifying periods of low compliance

for exclusion.

Initial progress has been made toward this goal [46,63�].
Gonzalez-Castillo et al. [63�] demonstrated that distinct

cognitive states, annotated with Neurosynth’s cognitive

state ‘topics’, can be decoded from functional connectiv-

ity dynamics during rest. However, although analyses

were restricted to data that had the least head motion

and sleepiness confounds, the authors note that there was

large inter-subject variability in brain state dynamics and

that distinct periods of cognitive states during rest were

poorly captured by dynamic functional connectivity com-

pared to task.

To overcome these limitations, studies may consider

collecting concurrent behavioral (e.g., experience sam-

pling with intermittent thought probes) and physiological

(e.g., skin conductance, pupillometry) measures during

resting-state scans to characterize ongoing internal states.

Highly sampled, concurrent measurements can provide

rich dimensional indicators of participant’s endogenous

experiences during scans. For example, Kucyi et al. [64]

used a finger tapping task during scans without any

external stimulus, in which participants were instructed

to tap their finger every 600 ms throughout the scan. The

study used behavioral response variability (collected at

every second of the scans) as a proxy for fluctuating

attentional states. Furthermore, recent advances in reduc-

ing high-dimensional brain states into low-dimensional

[63�,65,66] connectivity gradients, which retain biologi-

cally meaningful organizational principles [67], may

enhance the interpretability and predictive performance

of models that characterize ongoing attention and cogni-

tion during rest [68,69].

One way to achieve ‘cognitive decoding’ from resting-

state data could be to build robust and generalizable
www.sciencedirect.com
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predictive models of ongoing cognition from task fMRI

data paired with simultaneous, highly sampled behavioral

data. These models could be tested using naturalistic

neuroimaging data, in which brain activity and connec-

tivity are simultaneously driven by the continuous stream

of external stimuli and internal state fluctuations. Models

that successfully generalize could then be applied to

resting-state data and validated with measures of atten-

tional state such as infrequent thought probes or eye-

tracking measures. We will discuss theoretical benefits

and practical ways of achieving attentional state predic-

tions from task, naturalistic, and rest data in the following

section.

Looking ahead: disentangling state-like from
trait-like aspects of functional connectivity
Characterizing the network predictors of different aspects

of attention and changes in attentional processes over

time can help delineate the independent components of

attention [70], elucidate their interactions with cognitive

processes such as comprehension and memory [52,59��],
provide insight into their associated functional brain

architecture, and inform the ways in which these archi-

tectures change to modulate internal states. In this

review, we introduced work on connectome-based mod-

els that predict individual differences in sustained atten-

tion, which have generalized to predict different mea-

sures of the ability to maintain focus (including task

performance and ADHD symptoms) in multiple datasets

collected by independent research groups. We have also

reviewed complementary work using time-varying brain

connectivity to predict evolving attentional and cognitive

states during controlled psychological tasks, naturalistic

movie viewing and story listening, and rest.

Despite significant progress predicting both inter-indi-

vidual and intra-individual differences in sustained atten-

tion, a number of open questions remain. What proportion

of variance in static functional connectivity patterns is

explained by inter-individual versus intra-individual var-

iance? Does this ratio vary as a function of cognitive state

and scan type? To what degree does time-varying func-

tional connectivity reflect cognitively meaningful brain

states? Do attentional state fluctuations drive connectiv-

ity dynamics that would, without sufficiently sensitive

behavioral or physiological metrics to validate them,

otherwise be characterized as noise? We suggest that

predictive modeling based on multi-session neuroimag-

ing with highly sampled behavioral measures, or deep

imaging, can help address these questions. Collection and

analysis of densely sampled, multi-session data from

participants engaged in a variety of experimental para-

digms—ranging from controlled, semi-controlled, natu-

ralistic tasks and rest—will allow researchers to charac-

terize state-level variance on top of trait-level variance in

functional connectivity. Together with predictive model-

ing on multiple timescales (Figure 1), work can ask
www.sciencedirect.com 
whether an individual’s moment-to-moment changes in

functional connectivity, independent of their static func-

tional connectivity ‘fingerprint’, reflect time-varying

attentional, cognitive, and/or affective states during con-

trolled and naturalistic tasks. Validated models can sub-

sequently be applied to characterize ongoing internal

states during rest, as participants experience endogenous

fluctuations of attention. Behavioral sampling during or

after resting-state scans will be useful for validating

model performance.

Figure 2 outlines outstanding questions that can be

addressed with predictive modeling across time and con-

texts. First, testing model generalization across time and

contexts can provide new insight into the distinct or

overlapping functional architecture of different attention

components (Figure 2a). For example, testing the degree

to which a model trained to predict individual differences

in sustained attention during task performance predicts

attentional engagement and other types of attention, such

as spatial attention and attentional control, during natu-

ralistic viewing or spontaneous thoughts (i.e., generaliza-

tion across contexts) can delineate the taxonomy of atten-

tion and its neural substrates. Furthermore, testing the

degree to which a static connectome-based model of

sustained attention predicts dynamically changing atten-

tion and vice versa (i.e., generalization across time) can

tell us how an individual’s trait-like functional connectiv-

ity pattern is dynamically modulated to represent fluctu-

ating attentional states.

Figure 2b illustrates ways in which deep imaging can

improve the interpretability of brain features in predictive

models, a challenging problem in machine learning espe-

cially when features are correlated with each other [71].

First, imagine a hypothetical dataset of multiple individ-

uals each performing two sessions of the same sustained

attention task. The test-retest reliability of predictive

model feature weights could be assessed by comparing

the feature maps from models built to predict perfor-

mance in the first and second sessions separately. Second,

imagine that participants had instead performed a sus-

tained attention task in session one and watched a movie

in session two. Comparing models that predict sustained

attention task performance from session one data and

narrative engagement from session two data—and asking

whether the degree of overlap in predictive networks

exceeds what would be expected by chance alone—can

help narrow down a set of features related to both atten-

tional processes or unique to each context. Thus, consid-

ering the overlap between functional networks predicting

the same and different measures of attention can facilitate

feature interpretation.

Third, datasets that include multiple behavioral measures

can inform relationships between attention and other

cognitive processes, including memory, learning, and
Current Opinion in Behavioral Sciences 2021, 40:33–44
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Figure 2

(a) (b)

(d)(c)

Model generalization Feature interpretation

Cognition prediction Spontaneous thought prediction
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Outstanding questions in predictive modeling research.

We envision four main questions that can be addressed with multi-session neuroimaging and predictive modeling. (a) Do predictive models,

defined using an individual’s static functional connectivity ‘fingerprint’ observed in one task state, generalize to predict attention characterized at

finer timescales and with different data types? In the schematic brain, colored lines show the anatomy of a hypothetical predictive model,

indicating functional connections that are positively (red) or negatively (blue) correlated with individual differences in task performance. (b) How

consistent or distinct are networks that predict attention? One way to ask this question is to assess the overlap of independently defined models.

The colored lines indicate functional connections that predict different measures of attention in different contexts. Green connections predict both

behavioral scores, whereas blue and orange connections are unique to each model. (c) Do models trained to predict aspects of attention

generalize to predict other cognitive processes, such as memory, learning, or decision making? The figure illustrates a hypothetical relationship

between an observed cognitive measure and an attention measure predicted from task-based and naturalistic connectivity. (d) Do models trained

to predict behavioral measures of attentional state during tasks and naturalistic paradigms generalize to predict spontaneous thoughts during

rest? The figure on the left illustrates a hypothetical set of model predictions from two sessions of static resting-state connectivity, corresponding

to estimated probabilities that an individual is engaging in certain patterns of thought. In this example, the model predicts that the individual is

likely to be planning for the future during the first rest session, but in a cognitive state related to problem solving during the second rest session.

The figure on the right illustrates moment-to-moment changes in these probabilities, decoded from time-varying resting-state functional

connectivity. In this example, the participant’s evolving functional connectivity patterns suggest that they are likely to be engaged in problem

solving during the initial part of the scan but memory towards the end of the scan.
decision making. Figure 2c illustrates an example where

connectome-based models of attention are independently

defined from controlled and naturalistic task fMRI data.

Studies can ask whether these models not only predict

attention but individuals’ cognitive abilities as well. For

example, a study can ask if an individual’s sustained

attention network strength during a memory task is

predictive of their memory performance. Similarly, inte-

grating multi-voxel pattern-based decoding analysis of

perceptual and semantic features of visual items or

scenes, studies can apply dynamic connectome-based
Current Opinion in Behavioral Sciences 2021, 40:33–44 
modeling to predict moment-to-moment attentional state

and ask how attention dynamically modulates perceptual

or semantic representations of the brain [72,73].

Lastly, Figure 2d prospects ways in which validated

models can be applied to predict session-by-session or

moment-to-moment changes in spontaneous thought

content during rest. After characterizing network-level

brain states representative of cognitive states (e.g., prob-

lem solving, future planning, memory, or verbalizing)

with task and naturalistic paradigms, studies can ask
www.sciencedirect.com
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whether differences in resting-state functional connectiv-

ity are explained by differences in cognitive or attentional

abilities and states.

Predictive modeling in psychological research
The utility of brain-based predictive modeling has been

emphasized in translational research [71,74], for which

the goal is to predict health-related outcomes. However,

predictive modeling also has value for basic psychological

research for which the overarching goal is to understand

mental processes and behavior. Complementing explan-

atory models that characterize statistical associations

between brain features and behavioral measures, predic-

tive models forecast outcomes from unseen brain data and

can be used to build and test theories of mental processes

[75,76]. In this review, we introduced ways in which

predictive models can be used to uncover the behavioral

relevance of functional brain networks. With highly sam-

pled behavioral measures assessed in diverse contexts,

predictive models can untangle components of attention

based on the underlying features of the brain that are

involved [77]. They can also help address important

questions about the test-retest reliability [78,79] and

generalizability of neuroimaging findings [80].

Conclusion
Significant progress has been made toward building mod-

els that predict aspects of attention from static functional

connectivity. Although work suggests that more variance

in functional connectivity patterns is explained by indi-

viduals than states, a burgeoning literature provides evi-

dence that connectivity dynamics do in part reflect atten-

tional and cognitive state dynamics during controlled and

naturalistic tasks and rest. Looking ahead, highly sampled

fMRI and behavioral data in a wide range of cognitive

states and task contexts will help elucidate the behavioral

relevance of functional network dynamics across time

scales and facilitate the development of a suite of

brain-based predictive models of human attention and

cognition.
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