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Predicting post-stroke aphasia from brain 
imaging
Stroke can lead to debilitating consequences, including loss of language. An important goal of stroke research is to 
use machine learning to predict outcomes and response to therapy. A new study compares different approaches to 
predicting post-stroke outcomes and highlights the need for systematic optimization and validation to ultimately 
translate scientific insights to clinical settings.
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After suffering a stroke, approximately 
30% of patients experience persistent 
language deficits, or chronic 

aphasia1. Communication impairments can 
be devastating. Even when controlling for 
physical abilities and social support, patients 
with post-stroke aphasia report worse 
quality of life than patients without aphasia2. 
Intensive speech and language therapy 
shows promise for improving outcomes 
in aphasia3. Doctors, however, aren’t 
always able to anticipate which patients 
could benefit most—that is, who will go 
on to suffer the worst and longest-lasting 
impairments or show the pattern of 
symptoms most amendable to treatment. 
Thus, an important goal of stroke research is 
to determine what markers of brain damage 
best predict patients’ symptom constellation, 
potentially informing treatment outcomes. 
A new study by Halai and colleagues4 in 
Nature Human Behaviour works toward this 
goal by comparing approaches to predicting 
post-stroke aphasia from magnetic 
resonance imaging (MRI) measures.

Neuroimaging techniques, including 
MRI, are potentially valuable tools for 
personalized medicine because they can 
provide information about each patient’s 
unique pattern of brain structure, function 
and connections. Initial efforts to predict 
post-stroke aphasia from MRI data 
found that models based on measures of 
patients’ brain structure predicted their 
aphasia subtype and language function5,6. 
Results aligned with previous findings that 
lesion size and location, as well as aphasia 
severity, are particularly important for 
communication outcomes7. Subsequent 
work from Halai and colleagues identified 
four orthogonal dimensions of language 
impairments following stroke8 and used 
structural MRI data from 70 patients with 
chronic post-stroke aphasia to predict 
aspects of these deficits9. Despite these 

advances, it is not yet clear whether MRI 
can improve post-stroke aphasia prediction 
in real-world clinical settings. In other 
words, can different types of brain scans 
help clinicians predict whether—and how 
severely—a patient will go on to suffer 
different forms of language impairments?

The questions raised by Halai et al. in 
their new study are important for advancing 
the clinical efficacy of brain-based models in 
post-stroke aphasia. Specifically, the authors 
ask: what features of an individual’s brain 
structure and connections best predict their 
language impairments following stroke? 
(For example, do measures of grey and 
white matter integrity predict post-stroke 
outcomes? Does adding additional measures 
of neural integrity improve predictions?) 
What machine learning algorithm generates 
the most accurate predictions?

To address these questions, Halai and 
colleagues analysed structural MRI and 
diffusion-weighted imaging data from the 
70 patients included in their prior work. 
Structural MRI scans provide information 
about different types of brain tissue and 
stroke-related tissue damage, whereas 
diffusion scans provide information 
about anatomical brain connections. The 
researchers built models to predict each of the 
four language dimensions they introduced 
previously: phonology, semantics, executive 
or cognitive skills, and speech fluency. They 
compared the success of different model 
‘recipes’ built using combinations of six 
MRI-derived brain measures from multiple 
brain regions with four machine learning 
algorithms. Models were defined using 
ten-fold cross-validation, meaning that they 
were trained using data from 90% of patients 
and applied to predict language outcomes in 
the held-out 10% of patients.

Models with many different recipes 
predicted patients’ aphasia outcomes. 
Although no single recipe won the 

prediction contest, some consistent patterns 
emerged. First, the authors found that while 
measures of grey and white matter integrity 
predicted outcomes, adding diffusion data 
did not improve models’ predictive power. 
In addition, they observed that, across 
comparisons, Gaussian process regression 
significantly outperformed the other 
machine learning algorithms. When moving 
to a more detailed level of analysis, however, 
it is important to note that some individual 
model recipes may have outperformed 
others due to chance because of the large 
number of models tested (24 combinations 
of 6 brain features × 5 brain parcellation 
schemes × 4 prediction algorithms = 480 
model recipes per language component).

The predictive models for post-stroke 
aphasia described in Halai et al. and 
in previous work represent intriguing 
advances. However, all models described 
here were internally validated, which means 
that they were trained and tested on subsets 
of data from the same patient sample. Their 
generalizability to new patient groups—that 
is, their external validity—is unknown. 
Because models that only predict outcomes 
in one group of patients using data from 
one site or MRI scanner are less practically 
useful, external validity is a hurdle that must 
be cleared before models can be translated 
from the bench to the bedside. Resources 
such as the Predict Language Outcome 
and Recovery After Stroke (PLORAS) 
Database, which includes MRI data and 
language measures from 750 patients with 
aphasia10, provide valuable opportunities 
to test whether models generalize to 
predict outcomes in new datasets. As Halai 
et al. note in the limitations section of 
their article, the current models were not 
externally validated because of a lack of 
large-scale datasets including all of the brain 
scan types tested. Future model validations 
can address a key question untested by 

Nature HumaN BeHaviour | VOL 4 | JuLy 2020 | 675–676 | www.nature.com/nathumbehav

http://crossmark.crossref.org/dialog/?doi=10.1038/s41562-020-0902-1&domain=pdf
http://www.nature.com/nathumbehav


676

news & views

Halai and colleagues: do the top-performing 
models in their sample also best predict 
language function in completely new 
individuals? As data become more widely 
available, adopting cross-dataset validation 
as standard practice in brain-based 
predictive modelling is critical for increasing 
the clinical utility of MRI.

A central goal of translational 
neuroscience is building brain-based models 
that generate robust, reliable predictions 
of symptoms and behaviour. Research that 
systematically evaluates model features, 
algorithms and generalizability represents 
an important step towards developing a 
standardized tool-kit of predictive modelling 
approaches in human neuroimaging. 
Optimizing predictive models not only 
improves our basic understanding of 

brain-to-behaviour relationships, but may 
also increase the feasibility of applying 
models in real-world settings. For example, 
knowing which type of data best predicts 
post-stroke aphasia could help doctors 
decide what behavioural and MRI data to 
collect (and not collect), minimizing costs 
to hospitals and patients. The work by Halai 
and colleagues highlights the importance 
of optimizing brain-based predictive 
models and evaluating their cross-dataset 
generalizability for improving basic scientific 
understanding and patient care. ❐
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