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a b s t r a c t 

As public access to longitudinal developmental datasets like the Adolescent Brain Cognitive Development Study SM 

(ABCD Study®) increases, so too does the need for resources to benchmark time-dependent effects. Scan-to-scan 

changes observed with repeated imaging may reflect development but may also reflect practice effects, day- 

to-day variability in psychological states, and/or measurement noise. Resources that allow disentangling these 

time-dependent effects will be useful in quantifying actual developmental change. We present an accelerated adult 

equivalent of the ABCD Study dataset (a-ABCD) using an identical imaging protocol to acquire magnetic reso- 

nance imaging (MRI) structural, diffusion-weighted, resting-state and task-based data from eight adults scanned 

five times over five weeks. We report on the task-based imaging data ( n = 7). In-scanner stop-signal (SST), mon- 

etary incentive delay (MID), and emotional n -back (EN-back) task behavioral performance did not change across 

sessions. Post-scan recognition memory for emotional n -back stimuli, however, did improve as participants be- 

came more familiar with the stimuli. Functional MRI analyses revealed that patterns of task-based activation 

reflecting inhibitory control in the SST, reward success in the MID task, and working memory in the EN-back 

task were more similar within individuals across repeated scan sessions than between individuals. Within-subject, 

activity was more consistent across sessions during the EN-back task than in the SST and MID task, demonstrat- 

ing differences in fMRI data reliability as a function of task. The a-ABCD dataset provides a unique testbed for 

characterizing the reliability of brain function, structure, and behavior across imaging modalities in adulthood 

and benchmarking neurodevelopmental change observed in the open-access ABCD Study. 
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. Introduction 

The increasing availability of open-access datasets with developmen-

al neuroimaging data provides unprecedented power for characterizing

elationships between the developing brain and behavior. To date these

atasets include structural and functional magnetic resonance (fMRI),

ehavioral, and demographic data from more than 20,000 youth around

he world ( Rosenberg et al., 2018 ; Simmons et al., 2021 ) and facili-

ate reproducibility and replication in developmental cognitive neuro-
cience. 
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Some of these studies include longitudinal neuroimaging data col-

ected during cognitive tasks, allowing researchers to characterize how

ehavioral performance and corresponding fMRI activity change —or

emain stable —across development. Although longitudinal designs of-

er clear benefits, one potential downside is that what appears to be

evelopmental change may in part be driven by practice effects that

ccompany repeated sampling. For example, participants could hypo-

hetically show improved behavioral performance and distinct patterns

f brain activity during a cognitive task when they are fourteen years
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1 We included 8 individuals (5 scans per individual = 40 scans total) based on 

scan time and funding constraints. This sample size is in line with other small 

n “deep phenotyping ” studies, including the MyConnectome project ( n = 1, 104 

sessions; Poldrack et al., 2015 ) and the Midnight Scan Club dataset ( n = 10, 

12 sessions each; Gordon et al., 2017 ), although these datasets include more 

data per individual. Given this small n, we focus on individual-level rather than 

group-level effects in all fMRI analyses. For behavioral analyses, we include 

Bayesian statistics to quantify evidence in favor of the null vs. alternative hy- 

pothesis for all group-level tests. Finally, we visualize individual participant data 

to give readers the opportunity to assess the consistency of behavioral and fMRI 

results across participants. 
2 We were motivated to keep time-of-scan constant based on work suggesting 

that sustained attention ( Riley et al., 2017 ) and functional connectivity patterns 

( Fafrowicz et al., 2019 ; Orban et al., 2020 ) vary with time of day in adults. 

Given the sheer number of scans acquired for the ABCD Study and variability in 

access to scanners across sites, controlling for time-of-day in the acquisition of 

the ABCD Study imaging data is not feasible. However, having the time of day 

logged for ABCD scans provides the scientific community with the opportunity 

to use these data in their analyses. 
ld compared to when they were eight. These differences could reflect

eurodevelopment with the transition into adolescence or greater ex-

ertise with the task after repeated testing (i.e., practice effects). They

ould also simply reflect noise in unreliable behavioral and/or brain

easures (unless they are statistically reliable across a group of indi-

iduals). Put another way, scan-to-scan differences in fMRI task per-

ormance and patterns of activation in longitudinal studies may reflect

rait-like variability (e.g., developmental change), state-like variability

e.g., differences in task familiarity and cognitive, attentional, and emo-

ional states during scan sessions), an interaction between the two (e.g.,

hanging states or state frequencies across development), and/or noise.

easuring the reliability and meaningful variation of behavior and brain

unction across repeated study sessions helps disentangle these inter-

ctions and interpret longitudinal changes. A growing body of work

ssesses the reliability of task-based patterns of fMRI activity within-

ubjects and across sites in youth ( Casey et al., 1998 ; Haller et al., 2018 ;

ennedy et al., 2021 ) and adults ( Bennett & Miller, 2013 ; Berman et al.,

010 ; Buimer et al., 2020 ; Elliott et al., 2020 ; Friedman et al., 2008 ;

ee et al., 2015 ; Kragel et al., 2021 ; Li et al., 2020 ; McGonigle et al.,

000 ; Raemaekers et al., 2012 ; for reviews see Herting et al., 2018 ;

oble et al., 2021 ). An open question remains, however, about how

o “benchmark ” session-to-session differences observed in longitudi-

al developmental neuroimaging datasets —that is, how to disentangle

evelopmental effects from practice effects from repeated testing and

ther state-related effects and noise. Answering such a question requires

 highly sampled within-subject dataset calibrated to a large cohort

ataset. 

Here we contribute to work on this question with data from a new

ccelerated adult cohort of a large-scale developmental neuroimaging

tudy: the Adolescent Brain Cognitive Development Study SM (ABCD

tudy®). The ABCD Study ( Casey et al., 2018 ; Luciana et al., 2018 ;

olkow et al., 2018 ) is a longitudinal assessment of brain develop-

ent in a sample of 11,875 9- to 10-year-olds at 21 sites across the

nited States. ABCD Study participants complete the same 90-minute

RI battery —which includes structural scans, diffusion weighted imag-

ng scans, four 5-minute resting-state runs, and two runs each of the

motional n -back (EN-back) task, stop-signal task (SST), and mon-

tary incentive delay (MID) task —every two years for ten years,

rom 2016-17 through 2026-27. In addition, participants complete

Pad questionnaires and tasks during yearly lab visits and interven-

ng phone interviews every six months. ABCD Study data are made

penly available to the research community at The National Institute

f Mental Health Data Archive ( https://nda.nih.gov/abcd ) as they are

ollected. 

The current study uses an accelerated adult equivalent of the ABCD

a-ABCD) imaging protocol in eight young adults scanned five times to

arallel the five longitudinal waves of ABCD Study imaging data that

ill be collected over 10 years. Using the task-based data from our ac-

elerated adult cohort, we first characterize the stability of adults’ fMRI

ask performance from one scan session to the next, asking whether per-

ormance improves from week to week due to practice effects and/or

rowing familiarity with the scanning protocol. We next characterize

he consistency of fMRI activation maps across scan sessions, asking

hether contrast maps reflecting inhibitory control in the SST, reward

uccess in the MID task, and working memory in the EN-back task are

imilar within individuals over time. These analyses inform the reli-

bility of behavior and brain function in ABCD Study neuroimaging

asks in adulthood. More broadly, the a-ABCD dataset itself may be a

seful resource for researchers working with the ABCD Study sample

r other longitudinal developmental datasets, providing opportunities

o compare adult and developmental datasets with identical scanning

rotocols (including task and rest fMRI, structural MRI, and diffusion

ensor imaging) and disentangle scan-to-scan effects observed on the

rder of weeks from developmental effects observed on the order of

ears. 
2 
. Methods 

.1. Participants 

.1.1. Accelerated adult ABCD (a-ABCD) sample 

Eight right-handed adults (4 female, mean age = 23 years, SD = 1.3

ears, range = 21–25 years, 62.5% White/non-Hispanic; 25% Asian;

2.5% Black/Hispanic) with no history of neurological injury or illness

articipated 1 . Participants had previously participated in MRI studies or

as gained familiarity with MRI through school or work. For six indi-

iduals, scan sessions were held 7 days apart. Two participants’ fourth

nd fifth sessions were separated by 8 and 26 days, respectively. Data

rom the latter participant were excluded from the current analysis due

o errors in fMRI task administration (e.g., task runs acquired out of

rder; task runs launched separately instead of as two runs embedded

ithin one E-Prime execution disrupting task staircasing), resulting in a

nal sample of seven individuals (3 female, mean age = 23). Data from

ne participant’s second-session monetary incentive delay task were ex-

luded from analysis due to errors in task administration. 

All scan sessions began between 11 AM and 2 PM (mean start

ime = 12:21 PM, SD = 1.25 hours), and all five of each participant’s

cans started within an hour of each other to minimize time-of-day ef-

ects 2 . Participants provided written informed consent in compliance

ith procedures approved by the Yale University Human Subjects Com-

ittee and were paid for their participation. 

.1.2. Comparison youth ABCD Study sample 

Behavioral data from year one (baseline) of the ABCD Study were

btained from curated data release 2.0.1 (DOI 10.15154/1504041) as

 qualitative comparison sample ( n = 11,537; age range = 9-10 years;

8.4% female; exclusion criteria described in Rosenberg et al., 2020 ).

easures included SST, MID, emotional n -back, and post-scan recogni-

ion memory performance. 

.2. Study design 

Participants completed five ABCD Study-style imaging sessions over

he course of approximately five weeks to parallel the ABCD Study pro-

ocol that includes five imaging sessions over the course of ten years,

ith scans every two years from age 9–10 to age 19–20. Replicating the

BCD Study protocol, each testing session began with a pre-scan prac-

ice of three neuroimaging tasks: the stop-signal, monetary incentive

elay, and emotional n -back tasks. Participants then completed a pre-

canning questionnaire indicating how much they were experiencing ten

ifferent feelings and emotions (e.g., relaxed, happy, awake, sad). Next,

https://nda.nih.gov/abcd


K.M. Rapuano, M.I. Conley, A.C. Juliano et al. NeuroImage 255 (2022) 119215 

d  

w  

t  

h  

p  

n  

m  

c  

W  

o  

T  

o

2

 

t  

a  

s  

n  

i  

p  

E

2

 

6  

t  

S  

c  

2  

s  

r  

a  

t  

j  

c  

i  

t  

(  

s  

a  

fi  

o  

t

2

 

m  

t  

e  

l  

d  

w  

t  

a  

a  

r  

T  

o  

b  

6  

p  

o

2

 

m  

s  

0  

o  

n  

s  

m

o  

“  

b  

0

2

 

d  

r  

p

o

2

 

w  

F  

S  

T  

s  

r  

A  

i  

b  

i  

t  

6  

m  

t  

1  

w  

m  

f  

e  

s  

a

2

 

m  

M  

i  

p  

B  

t  

w  

(  

p  

e  

t  

p  

c  

e  

i  

e

uring MRI data collection, participants completed structural, diffusion-

eighted, resting-state, and three task-based imaging scans using a pro-

ocol described in previous work ( Casey et al 2018 ) and detailed at

ttps://abcdstudy.org/scientists/protocols . After the scans were com-

leted, participants performed a recognition memory test for emotional

 -back task stimuli, completed a post-scanning questionnaire rating how

uch they were experiencing the same ten feelings and emotions, and

ompleted a post-MID questionnaire. Participants also completed the

echsler Abbreviated Scale of Intelligence (WASI-II) ( Wechsler, 2011 )

nce during the course of the study; these data are not analyzed here.

hey did not complete other ABCD Study behavioral tasks, interviews,

r questionnaires. 

.3. Tasks 

During each study session, participants completed three in-scanner

asks: (1) the stop-signal task (SST), designed to measure impulsivity

nd impulse control; (2) the monetary incentive delay (MID) task, de-

igned to measure aspects of reward processing; and (3) the emotional

 -back (EN-back) task, designed to measure processes related to work-

ng memory and emotion regulation ( Casey et al., 2018 ). After scanning,

articipants performed a recognition memory task assessing memory for

N-back task stimuli. Task details are described below. 

.3.1. Stop-signal 

During each fMRI session, participants performed two approximately

-min runs of the SST ( Casey et al., 2018 ; Logan, 1994 ) (437 volumes af-

er discarded acquisitions). Data were collected using the original ABCD

tudy SST E-Prime scripts before updates addressing issues raised in a

ommentary on the ABCD Study stop-signal task design ( Bissett et al.,

021 ) were made. Trials began with a left- or right-facing arrow (the go

ignal). Participants were instructed to press a button indicating the di-

ection of the arrow as quickly and accurately as possible, except when

n arrow pointing up (the stop signal) appeared (16.67% of trials). The

ime between go and stop signal onset —the stop-signal delay —was ad-

usted in a stepwise manner (i.e., staircased) so that each participant

orrectly withheld a response to approximately half of stop trials. Specif-

cally, the time between the onset of the go signal and the onset of

he stop signal (the stop-signal delay; SSD) was initially set to 50 ms

 Bissett et al., 2021 ; Casey et al., 2018 ). When a participant failed to

top, task difficulty was decreased by shortening the SSD by 50 ms (to

 minimum of 0 ms). When a participant successfully stopped, task dif-

culty was increased by lengthening the SSD by 50 ms (to a maximum

f 900 ms). Here performance is measured with the stop-signal reaction

ime (SSRT; mean SSD subtracted from mean correct-trial RT). 

.3.2. Monetary incentive delay 

During each fMRI session, participants performed two approxi-

ately 5.5-min MID task runs (403 volumes after discarded acquisi-

ions) ( Casey et al., 2018 ; Knutson et al., 2000 ; Yau et al., 2012 ). On

ach trial, participants saw a cue indicating whether they could win or

ose $0.20 or $5, or whether no money was at stake ($0). After a variable

elay of 1500–4000 ms, a target appeared for 150–500 ms. Participants

ere instructed to respond via button press while the target was on

he screen to win or lose the indicated amount. Feedback was provided

fter each trial. Target timing was staircased such that each participant

chieved and maintained approximately 60% accuracy. Initial target du-

ation was based on each participant’s RT during the pre-scan practice.

ask difficulty was adjusted after every third incentivized trial based

n the participant’s accuracy on the previous six trials. If accuracy was

elow 60%, target duration was lengthened and if accuracy was above

0%, target duration was shortened. Here performance is measured as

ractice trial RT and percent positive feedback (i.e., percent accuracy)

n reward, loss, and neutral trials. 
3 
.3.3. Emotional n-back 

In each scan session, participants completed two approximately 5-

in EN-back task runs (362 volumes per run after discarded acqui-

itions) ( Barch et al., 2013 ; Casey et al., 2018 ). Runs included four

-back blocks (low memory load) and four 2-back blocks (high mem-

ry load) with stimuli from one of four categories: happy, fearful, and

eutral faces and places. During 0-back blocks, participants were in-

tructed to press a button indicating “match ” when they saw an image

atching a target picture, and to press a button indicating “no match ”

therwise. During 2-back blocks, participants were instructed to press

match ” when they saw an image matching the picture from two trials

ack, and to press “no match ” otherwise. Performance is measured by

-back and 2-back task percent accuracy. 

.3.4. Recognition memory 

After each imaging session, participants’ memory for stimuli seen

uring the emotional n -back task was probed with an out-of-scanner

ecognition memory test ( Barch et al., 2013 ; Casey et al., 2018 ). Partici-

ants were asked to rate each of 48 n -back and 48 novel stimuli as “old ”

r “new. ” Memory performance is assessed with sensitivity ( d’ ). 

.4. Neuroimaging data collection 

Neuroimaging procedures replicated those of the ABCD Study. Scans

ere acquired on a Siemens Prisma 3T scanner at the Yale University

aculty of Arts and Sciences Brain Imaging Center (one of the 21 ABCD

tudy sites). Each scan session included a localizer, high-resolution 3D

1-weighted anatomical scan, two 5-min resting-state fMRI runs, diffu-

ion weighted images, 3D T2-weighted spin echo images, two 5-min

esting-state fMRI runs, and six task-based fMRI runs. Mirroring the

BCD Study design, task order and version (which controlled the order

n which stimuli were presented) was randomized across participants

ut held constant within participants ( Casey et al., 2018 ). Functional

mages were collected using a multiband gradient EPI sequence with

he following parameters: TR = 800 ms, TE = 30 ms, flip angle = 52°,

0 slices acquired in the axial plane, voxel size = 2.4 × 2.4 × 2.4 mm 

3 ,

ultiband slice acceleration factor = 6. T1 images were collected with

he following parameters: TR = 2500 ms, TE = 2.88 ms, flip angle = 8°,

76 slices, voxel size = 1 mm 

3 , parallel imaging factor = 2. T2 images

ere collected with the following parameters: TR = 3200 ms, TE = 565

s, variable flip angle, 176 slices, voxel size = 1 mm 

3 , parallel imaging

actor = 2x. Diffusion images were collected with the following param-

ters: TR = 4100 ms, TE = 88 ms, flip angle = 90°, 81 slices, voxel

ize = 1.7 × 1.7 × 1.7 mm 

3 . Detailed imaging acquisition parameters

re reported elsewhere ( Casey et al., 2018 ; Hagler et al., 2019 ). 

.5. Behavioral analyses 

Changes in task performance over time were assessed with linear

ixed effects models using the lme4 package in R ( Bates et al., 2015 ).

odels included session as a fixed effect and participant as a random

ntercept. Random slopes also were included if doing so significantly im-

roved model fit. Optimization was performed with the limited-memory

royden–Fletcher–Goldfarb–Shanno algorithm ( Byrd et al., 1995 ) with

he optimx package ( Nash & Varadhan, 2011 ). Significance was assessed

ith Type III Satterthwaite approximations using the lmerTest package

 Kuznetsova et al., 2017 ). Bayes factors, computed with the bayestestR

ackage ( Makowski et al., 2019 ), are reported as measures of relative

vidence for models including session as a fixed effect and random in-

ercepts for participants (and random slopes when they significantly im-

roved model fit) (H A ) relative to models only including random inter-

epts for participants (H 0 ). Bayes factors greater than one are considered

vidence in favor of the alternative hypothesis (H A , the model includ-

ng session as a predictor). Bayes factors 1–3 are considered anecdotal

vidence for H , 3–10 substantial evidence, 10–30 strong evidence, 30–
A 

https://abcdstudy.org/scientists/protocols
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00 very strong evidence, and > 100 decisive evidence ( Wetzels et al.,

011 ). Bayes factors less than one are considered evidence in favor of

he null hypothesis (H 0 , the model excluding session). Bayes factors 1/3–

 are considered anecdotal evidence for H 0 , 1/10–1/3 substantial evi-

ence, 1/30–1/10 strong evidence, 1/100–1/30 very strong evidence,

nd < 1/100 decisive evidence ( Wetzels et al., 2011 ). 

.6. Image preprocessing 

Neuroimaging preprocessing steps mirrored those used in the pub-

icly available ABCD-BIDS Community Collection (ABCC; Feczko et al.,

021 ; https://osf.io/psv5m/ ). Data were first converted to BIDS for-

at using dcm2bids ( https://github.com/cbedetti/Dcm2Bids ), which re-

rganizes nifti images produced with dcm2niix (Xiangrui Li et al.,

016 ). Raw images were processed using the ABCD-BIDS prepro-

essing pipeline (for details, see https://github.com/DCAN-Labs/

bcd- hcp- pipeline ; https://osf.io/89pyd/ ; Sturgeon et al., 2021 ), which

s based on the Human Connectome Project’s minimal preprocessing

ipeline ( Glasser et al., 2013 ). The first stage of this pipeline, Pre-

reeSurfer, performs brain extraction, alignment, and bias field correc-

ion on T1w and T2w images. The second stage, FreeSurfer ( Dale et al.,

999 ; Fischl, 2012 ), segments the resulting T1w images and identifies

issue boundaries which are then registered to a FreeSurfer template. In

he PostFreeSurfer stage, brain masks produced by FreeSurfer are used

o register T1w images to MNI space via Advanced Normalization Tools

ANTs) symmetric image normalization method ( Avants et al., 2008 ).

urfaces are transformed to standard space using spherical registration

nd converted to CIFTI format along with the standardized volumes. The

MRIVolume stage corrects for local field inhomogeneities by perform-

ng functional image distortion correction using reverse phase-encoded

pin echo images. To avoid potential motion confounds, eta squared

alues are computed for each pair of field map images relative to a

articipant-level average of all field maps, and the pair with the highest

alue (i.e., most representative of the average) was selected. Finally, the

MRISurface stage performs spatial smoothing (2-mm full-width half-

ax). 

This processing pipeline was identical to that used for the ABCC

 Feczko et al., 2021 ) and thus did not include procedures to account

or the longitudinal nature of the data. In addition to prioritizing con-

istency across pipelines, this approach also ensures consistency in the

emplate images used across ABCD Study and a-ABCD scans. However,

iven potential interest in within-participant changes in morphometry

ver time, the a-ABCD data repository includes raw imaging files that

ill allow researchers to optimize longitudinal processing procedures

epending on their needs. 

.7. Task activation analyses 

Because the ABCD-BIDS pipeline minimally processes the task fMRI

ata, additional preprocessing steps were completed using the abcd-

ids-tfmri-pipeline ( Juliano et al., 2021 ), a modified, Python-based ver-

ion of the TaskfMRIAnalysis stage of the HCP-pipeline. ABCD-BIDS-

fMRI uses FSL utilities and functions ( Jenkinson et al., 2012 ) to pre-

are the data for higher-level analyses. High-pass filtering was ap-

lied using a 200 sec cutoff. First-level GLMs were run using film_gls

 Woolrich et al., 2001 ). This included nuisance regression (motion pa-

ameters including six translations, rotations, and their derivatives), as

ell as the censoring of timepoints that exceeded a framewise displace-

ent of 0.9 mm. Initial timepoints were also censored to account for

he MRI signal stabilization. A double-gamma hemodynamic response

unction was used. Runs for each task were combined for each session

eparately using a fixed effects model. The emotional n -back task GLM

ncluded predictors for fixation and happy, fearful, and neutral faces as

ell as place stimuli in the 0-back and 2-back conditions. The SST model

ncluded predictors for correct and incorrect stop and go trials. The MID
4 
odel included small and large reward and loss cues and no stakes cues,

nd the corresponding positive and negative feedback. 

Representative contrasts for each task condition were selected for vi-

ualization and cross-session comparison (SST: correct stop vs. correct

o; MID: reward success vs. failure [i.e., positive vs. negative feedback

or small and large rewards]; EN-back: 2-back vs. 0-back). Contrasts

ere selected to match those reported previously in the ABCD Study

ample ( Casey et al., 2018 ; Chaarani et al., 2021 ). Additional contrasts

f interest are reported in supplemental materials. Visualizations were

erformed with Human Connectome Project Workbench and Python.

or each participant, binarized contrasts passing a vertex-wise thresh-

ld of p < 0.0001 were overlaid according to session to visualize within-

articipant consistency in task activation. In addition, Pearson correla-

ion was computed for every pair of unthresholded t -statistic contrast

mages, and a linear mixed-effects model (including a random effect

or session nested within subject) was used to test for significant differ-

nces between sessions collected within the same participant versus ses-

ions collected across participants. Correlation coefficients were Fisher

 -transformed before being submitted to mixed effects models. 

. Results 

.1. Behavioral results 

.1.1. Overall task performance 

Adult task performance during the first scan session fell within the

BCD Study baseline (i.e., year 1) cohort performance range ( Fig. 1 ).

edian performance during this first session ranged from the 62 nd per-

entile of the corresponding ABCD Study distribution (for MID reward

rial accuracy) to the 99 th percentile (for 0-back accuracy). Mean per-

ormance across all participants and sessions is reported in Table 1 . 

.1.2. Changes in performance across sessions 

Consistent with the ABCD Study, in-scanner task order —as well as

timulus order within each task —was held constant within participants

cross sessions. Thus, a potential obstacle for using this task battery to

ssess developmental changes in cognitive and attentional processes is

hat participants may show practice effects as tasks become more famil-

ar and trial orders more predictable. Such practice effects could poten-

ially obscure day-to-day variability in cognitive states or be misinter-

reted as developmental change. 

Contrary to predictions that performance would improve across ses-

ions due to practice effects, fMRI task performance did not change over

ime ( Fig. 2 ). Rather, Bayes factors (which reflect the marginal likeli-

ood of the null hypothesis that performance does not change across

essions and the alternative hypothesis that it does change) provide sub-

tantial or stronger evidence for the null hypothesis for SST SSRT, MID

ask performance, and emotional n -back task performance, and anecdo-

al evidence for the null for SST SSD ( Table 2 ). Thus, the SST and MID

taircasing algorithms, designed so that participants would correctly

ithhold response to approximately 50% of SST stop trials and achieve

pproximately 60% MID task accuracy, resulted in stable SST and MID

erformance across sessions. Consistent MID practice RTs, which were

easured in pre-scan practice tasks and used to set the initial speed

f MID trials, suggest that participants did not strategically alter their

esponse times during practice trials in attempts to decrease MID task

ifficulty and win more money. Furthermore, 0-back and 2-back accu-

acy did not systematically vary across sessions. 

In contrast to the in-scanner task performance measures, post-scan

ecognition memory for emotional n -back stimuli changed across ses-

ions. Bayes factors provide decisive evidence that hit rate increased (as

articipants became familiar with the images used during the EN-back

ask) and very strong evidence that false alarm rate increased (as they

ecame familiar with the lure images presented in the recognition mem-

ry task). Concurrent increases in hit rate and false alarm rate resulted

n consistent d ′ scores over time. Because MRI sessions for ABCD Study

https://osf.io/psv5m/
https://github.com/cbedetti/Dcm2Bids
https://github.com/DCAN-Labs/abcd-hcp-pipeline
https://osf.io/89pyd/
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Fig. 1. Adult participant session 1 performance (adult) relative to distributions of the ABCD Study participant baseline (i.e., year 1) performance (abcd). Density 

plots show performance of 9- to 10-year-olds enrolled in the ABCD Study. Vertical lines below the density plots represent single-child data, and black dots represent 

single-adult data. Due to missing data, plots include data from the following number of ABCD participants: SST n = 9348, MID n = 9546, EN-back n = 9220, and 

recognition memory n = 8741. 

Table 1 

Task performance across adults and scan sessions. 

Task Behavioral measure min. max. median mean std. dev. 

SST Stop-signal delay (ms) 25.83 388.33 110.00 110.62 68.77 

SST Stop-signal RT (ms) 162.76 328.57 255.21 250.02 39.07 

MID Practice RT (ms) 210.00 375.00 267.00 270.97 35.89 

MID Reward % acc. 47.50 75.00 60.00 61.25 7.16 

MID Loss % acc. 45.00 70.00 60.00 59.04 6.54 

MID Neutral % acc. 30.00 75.00 55.00 54.71 13.08 

EN-back 0-back % acc. 92.50 100 98.75 97.96 2.17 

EN-back 2-back % acc. 90.00 100 97.50 96.96 2.73 

Recognition memory d ′ 1.01 3.30 2.17 2.12 0.66 

Recognition memory Hit rate (%) 39.58 100.00 83.33 78.57 16.33 

Recognition memory False alarm rate (%) 2.08 87.50 12.50 22.68 22.72 
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articipants are separated by two years rather than one week, memory

or EN-back stimuli encountered in previous scan sessions may have less

ronounced effects on recognition memory, if any. 

.1.3. Self-reported mood and feeling questionnaires 

Participants rated how relaxed, happy, scared, awake, upset, angry,

xcited, tired, sleepy, and sad they felt on a scale from 1 ( “very slightly

r not at all ”) to 5 ( “extremely ”) immediately before and after each scan

ession. We analyzed responses with linear mixed effects models includ-

ng time (pre-scan vs. post-scan) and session (1–5) as fixed effects and

articipant as a random effect. There were no significant main effects

f time and no significant interactions between time and session for any

ood or feeling. There was an effect of session on excitement such that
5 
eported excitement decreased across sessions ( 𝛽 = –0.11, SEM = 0.06,

 (1,60) = 4.20, p = 0.045); however, this effect did not survive Bon-

erroni correction for ten comparisons. All other effects of session were

onsignificant (uncorrected p > 0.05). 

.2. Imaging results 

.2.1. Activation pattern consistency varies as a function of task 

Because the a-ABCD dataset includes approximately 165 minutes of

ask data per participant (33 minutes/session × 5 sessions) and only

even participants, we focused on individual-level analyses. For each

articipant and each session, we contrasted fMRI activity associated

ith correct stop vs. correct go trials during the SST, reward success
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Fig. 2. Performance on the three functional MRI tasks (stop signal, monetary incentive delay, emotional n -back) and the post-scan recognition memory task for 

emotional n -back task stimuli. Lines in color represent single-subject data; black lines represent group means. 
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c  
s. failure trials during the MID task, and 2-back vs. 0-back blocks

n the EN-back task. Representative contrasts were selected to match

hose reported in previous work ( Casey et al., 2018 .) For each individ-

al, we visualized the overlap of session-specific contrast maps after

pplying an uncorrected vertex-wise threshold of p < 0.0001 and com-

uted correlations between pairs of unthresholded contrast maps across

essions. 

For the SST, the mean correlation between within-subject pairs of un-

hresholded t -statistic contrast images was r = 0.26 (subject-wise range

0.19, 0.34]; session-wise range [0.07, .46]; Fig. 3 ). We observed ver-

ices with significant positive values (correct stop > correct go) in up to

ve (of five) sessions for each participant, and vertices with significant
6 
egative values (correct go > correct stop) in in a maximum of one to

hree sessions for each participant. 

For the MID, the mean correlation between within-subject pairs of

nthresholded t -statistic contrast images was r = 0.14 (subject-wise

ange [0.09, 0.23]; session-wise range [–0.02, 0.31]; Fig. 4 ). We ob-

erved vertices with significant positive values (reward success > reward

ail) in, at most, one to three (of five) sessions, and vertices with signif-

cant negative values (reward fail > reward success) in at most two to

our sessions for each participant. 

For the EN-back task, we observed greater within-subject over-

ap of activity across sessions than in the SST and MID task. Mean

orrelation between participants’ unthresholded contrast maps was
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Fig. 3. SST activation maps. Within-participant overlap in SST activation (successful stop versus correct go) across sessions. Darker colors represent activity ( p < 

0.0001) more consistently present across a greater number of sessions (gold = successful stop > correct go; teal = correct go > successful stop). Bottom right panel 

represents similarity of unthresholded contrasts across sessions for each participant (pink) and between subjects (slate blue). Participants are ordered by their mean 

within-subject t -statistic correlation in the EN-back task. 

7 
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Fig. 4. MID task activation maps. Within-participant overlap in MID task activation (reward success versus fail) across sessions. Darker colors represent activity ( p < 

0.0001) more consistently present across a greater number of sessions (gold = successful reward > fail; teal = fail > successful reward). Bottom right panel represents 

similarity of unthresholded contrasts across sessions for each participant (pink) and between subjects (slate blue). Participants are ordered according to their mean 

within-subject t -statistic correlation in the EN-back task. 
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Table 2 

Results of mixed effects models testing the effect of session on task performance. Models included session as a fixed effect and participant as a random intercept. 

Random slopes were included when their addition significantly improved model fit. † Indicates models including random slopes. ∗ Indicates a significant effect of 

session ( p < 0.05 corrected for 11 comparisons). Bayes factors reflect evidence for models including session as a fixed effect (H A ) relative to models only including 

random intercepts for participants (H 0 ). Bayesian evidence category descriptors are based on Wetzels et al. (2011) . 

Task Behavioral measure b std. err. df F -stat p Bayes factor Bayesian evidence category 

SST Stop-signal delay † -0.167 0.109 1, 6 2.358 0.176 0.745 Anecdotal 

evidence for H 0 

SST Stop-signal RT 0.037 0.042 1, 27 .782 0.384 0.026 Very strong 

evidence for H 0 

MID Practice RT -0.025 0.116 1, 26.9 .048 0.827 0.050 Strong 

evidence for H 0 

MID Reward % acc. -0.073 0.122 1, 32 .365 0.550 0.063 Strong 

evidence for H 0 

MID Loss % acc. 0.052 0.121 1, 26.2 .188 0.668 0.057 Strong 

evidence for H 0 

MID Neutral % acc. 0.131 0.112 1, 26.2 .254 0.254 0.095 Strong 

evidence for H 0 

EN-back 0-back % acc. -0.016 0.105 1, 27 .024 0.877 0.045 Strong 

evidence for H 0 

EN-back 2-back % acc. 0.118 0.067 1, 27 3.050 0.092 0.126 Substantial 

evidence for H 0 

Recognition memory d ′ 0.136 0.113 1, 27 1.451 0.239 0.099 Strong 

evidence for H 0 

Recognition memory Hit rate ∗ 0.303 0.049 1, 27 37.645 1.48 ✕ 10 − 6 4210.898 Decisive 

evidence for H A 

Recognition memory False alarm rate † 0.207 0.177 1, 6 1.370 0.286 33.192 Very strong 

evidence for H A 
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 = 0.51 (subject-wise range [0.31, 0.71]; session-wise range [0.12,

.76]; Fig. 5 ). Vertices with significant 2-back > 0-back activity and

ertices with significant 0-back > 2-back activity demonstrated overlap

n a maximum of all five sessions for each participant. 

.2.2. Anatomical overlap of task activation patterns 

Although consistency was generally low for the SST and MID con-

rast maps, analyses did reveal some consistency in activation within

ach participant (and across participants) in several brain networks

 Fig. 6 A ). Vertices where activity consistently differed (i.e., were sig-

ificant in more than one session in any participant) between successful

top and correct go SST trials primarily fell within the visual (39% of

ertices significant in more than one session in of any participant) and

orsal attention networks (29%; Fig. 6 B ), with higher activity in these

egions observed during successful stop trials. Vertices where activity

onsistently differed between reward success vs. failure MID trials were

oncentrated within the default mode (54%), ventral attention (25%)

nd somatomotor networks (17%), with higher activity observed dur-

ng successful reward trials. Finally, consistency in 2-back vs. 0-back

N-back activation patterns was primarily observed within the fron-

oparietal (35%) and dorsal attention networks (34%). Note that for the

ST and MID contrasts in particular, the total number of vertices used

o calculate overlap percentages was low. 

.2.3. Activation patterns are more similar within than between individuals

The within-subject, across-session overlap of activation patterns var-

ed by task and was low in the SST and MID contrasts analyzed here.

iven this variability, individual session maps could be (a) noisy ob-

ervations of an activation pattern that is largely stereotyped across

he population or (b) noisy observations of a unique individual-specific

ctivation pattern. It also could be the case that what appears to be

ession-specific noise reflects session-specific state differences. As an

nitial approach to disentangling these non-exclusive possibilities, we

sked whether each person showed activation patterns that were more

imilar to themselves than to other individuals. Specifically, for each

ask, we used linear mixed effects models to compare the similarity

f task activation patterns within the same individual across different

can sessions vs. between different individuals. Similarity was measured

ith the Pearson correlation of unthresholded t -statistic contrast images
9 
rom pairs of sessions. Results revealed that, for all three task contrasts,

hole-brain activation patterns were more similar within than between

articipants (SST correct stop vs. correct go: 𝛽 [SE] = 0.15 [0.006], p

 0.0001; MID reward success vs. failure: 𝛽 [SE] = 0.10 [0.004]; p <

.0001; EN-back 2-back vs. 0-back: 𝛽 [SE] = 0.36 [0.008], p < 0.0001;

igs. 3 - 5 ). Thus, initial analyses suggest that individuals show unique

atterns of activity during the SST, MID, and EN-back tasks. 

. Discussion 

We collected an accelerated adult equivalent of the ABCD Study

ataset, the a-ABCD dataset, in which eight adults completed the ABCD

RI protocol every week for five weeks. We report on task fMRI data

rom seven adults. This precision fMRI design allowed us to character-

ze changes in behavior and brain function from one scan session to

he next, which may, looking ahead, help differentiate state-like scan-

o-scan changes from trait-like developmental change in the large-scale,

pen-access ABCD Study sample and inform the reliability of fMRI task

ctivation patterns in adulthood. For example, whereas year-to-year

hanges in EN-back task accuracy that fall within the adult scan-to-scan

ange may result from state-like changes, year-to-year changes that ex-

eed this range may be attributable to developmental effects. 

Despite the power of longitudinal designs for characterizing devel-

pmental change, practice, mood, and familiarity effects can introduce

onfounds for studies in which tasks are repeated across sessions. To

haracterize potential practice effects in the ABCD Study MRI battery,

e assessed how adults’ task performance changed across repeated ses-

ions. Contrary to predictions that performance would increase due to

rowing familiarity with the tasks and/or scanning environment, per-

ormance on the in-scanner SST, MID task, and EN-back task did not

hange over time. This was expected for the SST and MID tasks be-

ause difficulty was individualized with staircasing procedures during

ach scan session. MID practice RTs measured during a practice task

efore each scan and used to set initial MID trial speed, however, also

ere consistent across sessions. This finding suggests that participants

id not strategically speed up or slow down during pre-scan practice

o manipulate upcoming MID task difficulty. Furthermore, performance

n the 0-back and 2-back blocks of the EN-back task, which was not

ndividualized, also remained consistent over time. Thus, while perfor-
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Fig. 5. Within-participant overlap in EN-back task activation (2-back versus 0-back) across sessions. Darker colors represent activity ( p < 0.0001) more consistently 

present across a greater number of sessions (gold = 2-back > 0-back; teal = 0-back > 2-back). Bottom right panel represents similarity of unthresholded contrasts 

across sessions for each participant (pink) and between subjects (slate blue). Participants are ordered according to their mean within-subject t -statistic correlation. 

10 



K.M. Rapuano, M.I. Conley, A.C. Juliano et al. NeuroImage 255 (2022) 119215 

Fig. 6. A) Brain maps reflecting subject-wise overlap of consistent activity 

across sessions (i.e., vertices that were active during two or more sessions 

per participant). B) Radar plot illustrating the distributions of activity among 

functionally-defined networks ( Yeo et al., 2011 ). 
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u  
ance change from one ABCD Study scan session to the next could re-

ect both developmental change and task familiarity, we do not see evi-

ence of practice effects in adults in the current design. This is especially

oteworthy given that adults performed the tasks only one week apart,

hereas ABCD Study youth participants’ scan sessions are separated by

pproximately two years. 

In contrast to in-scanner task performance, we did see evidence for

hanges over time in the out-of-scanner recognition memory task for

N-back stimuli. Over time, participants became more likely to recog-

ize stimuli seen during the EN-back task itself and to incorrectly indi-

ate that new stimuli had been seen during the EN-back task. These two

ffects —an increase in hit rate to growing familiarity with task stim-

li and an increasing false alarm rate due to interference from previ-

us recognition memory tests —counteracted each other, resulting in a

table recognition memory d’ score over time. Although ABCD Study

can sessions are separated by two years, decreasing the possibility that

oth “old ” images seen during the task and “new ” images only seen in
11 
he recognition memory test will be recognized from previous testing

essions, researchers investigating changes in recognition memory over

ime should consider this possibility. 

We next characterized the consistency of adults’ task activation pat-

erns using representative contrasts of inhibitory control in the SST,

eward success in the MID task, and working memory in the EN-back

ask used in previous work with the ABCD Study sample ( Casey et al.,

018 ). SST and MID task contrast maps were variable across different

essions from the same participant: overlap between significant ver-

ices was low, and the mean correlation between pairs of a participant’s

ession-specific contrast maps was r = 0.26 for the SST contrast and

 = 0.14 for the MID contrast. This pattern of results was generally con-

istent across the other SST and MID contrasts visualized in the supple-

ental materials. It also echoes recent work reporting “close to zero ”

ithin-session reliability and poor across-session stability for these tasks

n ABCD Study youth baseline data and a subset of 2-year-follow-up

ata ( Kennedy et al., 2021 ). The current results are particularly strik-

ng because they show low similarity between SST and MID activation

atterns collected weeks —rather than years —apart. EN-back contrast

tability was higher, with more overlap between significant vertices ob-

erved across sessions and a mean correlation between pairs of a par-

icipant’s session-specific contrast maps of r = 0.51. Thus, the consis-

ency of activation patterns differed by task, potentially enhanced by

he EN-back task’s block design and disadvantaged by the SST and MID

asks’ event-related, individualized designs. An open question to con-

ider in complementary work is the relationship between behavioral and

MRI activation pattern stability in these tasks. That is, why do SST and

ID activation patterns vary while performance remains stable due to

taircasing? Do activation patterns vary because task timing varies with

taircasing, because cognitive states and/or performance strategies vary

cross scan sessions, or simply due to noise? 

What does low a-ABCD task activation pattern stability, especially in

he SST and MID tasks, mean for interpretations of ABCD Study data?

ased on their observations of poor reliability in ABCD Study task activa-

ion patterns, Kennedy and colleagues (2021) argue that these patterns

ay not be well-suited for individual differences analyses that assume

hey are stable and trait-like. Our results support their words of caution.

hey also suggest that, at least with the current ABCD task designs and

un lengths, researchers may be more confident in drawing conclusions

bout individual differences and developmental change from EN-back

ask contrasts than from SST or MID contrasts. 

Looking ahead, future work optimizing task design, imaging proto-

ols, and data collection approaches may help address the relatively

ow within-subject consistency of SST and MID contrasts. For exam-

le, a recent commentary noted design issues with the ABCD Study SST

 Bissett et al., 2021 ) which lead to changes in ABCD Study task scripts

 Garavan et al., 2021 ) after a-ABCD data were collected. In addition,

ecent work suggests that multiband imaging, such as that used in the

BCD and a-ABCD Studies, decreases the effect size of reward related ac-

ivity in medial brain regions including the nucleus accumbens and me-

ial prefrontal cortex ( Srirangarajan et al., 2021 ). These advances leave

pen the possibility that targeted imaging protocols and task designs,

nd increases in the amount of task data collected per individual (e.g.,

lliott et al., 2020 ; Gordon et al., 2017 ), may increase task contrast re-

iability. Task contrast reliability may also increase across development

 Kennedy et al., 2021 ). Although we did not directly compare ABCD

nd a-ABCD contrast reliability here, future work can explore changes

n activation pattern reliability over time. 

Maximizing the reliability of task-based measures is central to nearly

ll research using fMRI. It is especially critical, however, for individu-

lized analytic approaches that use task fMRI to track individual dif-

erences in behavior, forecast future outcomes from past developmen-

al trajectories, assess the effects of experiences and environments, and

valuate the efficacy of treatments or interventions. Although initial

esults in the a-ABCD sample suggest that individuals show relatively

nique task activation patterns that are more similar within- than be-
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ween subjects, future work is needed to both maximize the stability

f these patterns and model their sensitivity to varying cognitive, at-

entional, emotional, and arousal states. Characterizing how activation

atterns are influenced by such states can help isolate the trait-like activ-

ty patterns most useful for individual-level analyses such as biomarker

iscovery and personalized prediction. 

Future work is also needed to assess changes in performance and

tability of task activation patterns over short periods of time in larger

articipant samples. Although the pattern of behavioral and fMRI re-

ults was qualitatively similar in individual participants, it is unlikely

hat data from the seven individuals analyzed here are representative of

ll 21–25-year-olds. Large-scale deep phenotyping samples in develop-

ental and adult samples are necessary for evaluating changes observed

n large-scale longitudinal samples such as the ABCD Study. 

In summary, we anticipate that the a-ABCD dataset will be a useful

ool for comparing adult- and adolescent structural, task-based, resting-

tate, and diffusion-weighted MRI datasets with identical scanning pro-

ocols. The dataset is particularly well-suited for disentangling scan-to-

can effects from developmental effects and benchmarking neurodevel-

pmental change observed in the open-access ABCD Study sample. More

roadly, it joins a growing set of tools for characterizing the reliability of

rain measures and behavior across childhood, adolescence, and adult-

ood. 

ata and code availability 

Behavioral analysis code provided by the ABCD Study Data
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avioral analysis code specific to this study are available at

ttps://github.com/monicadrosenberg/a-ABCD . Data are available

t https://openneuro.org/datasets/ds004097 . 
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