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Abstract
Introduction: Connectome‐based predictive modeling (CPM) is a recently developed 
machine‐learning‐based framework to predict individual differences in behavior 
from functional brain connectivity (FC). In these models, FC was operationalized as 
Pearson's correlation between brain regions’ fMRI time courses. However, Pearson's 
correlation is limited since it only captures linear relationships. We developed a more 
generalized metric of FC based on information flow. This measure represents FC by 
abstracting the brain as a flow network of nodes that send bits of information to 
each other, where bits are quantified through an information theory statistic called 
transfer entropy.
Methods: With a sample of individuals performing a sustained attention task and 
resting during functional magnetic resonance imaging (fMRI) (n  =  25), we use the 
CPM framework to build machine‐learning models that predict attention from FC 
patterns measured with information flow. Models trained on n − 1 participants’ task‐
based patterns were applied to an unseen individual's resting‐state pattern to predict 
task performance. For further validation, we applied our model to two independent 
datasets that included resting‐state fMRI data and a measure of attention (Attention 
Network Task performance [n = 41] and stop‐signal task performance [n = 72]).
Results: Our model significantly predicted individual differences in attention task 
performance across three different datasets.
Conclusions: Information flow may be a useful complement to Pearson's correlation 
as a measure of FC because of its advantages for nonlinear analysis and network 
structure characterization.
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1  | INTRODUC TION

The brain's functional organization at rest and during task engage‐
ment can be studied with functional connectivity analyses of fMRI 
signals. Functional connectivity between two regions of the brain, 
or the statistical association between their activation over time, is 
frequently measured as Pearson's correlation between their respec‐
tive fMRI signals (Heuvel & Pol, 2010; Smith et al., 2013). Whole‐
brain functional connectivity can be represented as a matrix of the 
pairwise correlations across every region (Smith et al., 2013). This 
matrix, or “functional connectome,” is often interpreted as a fully 
connected network in which the nodes are brain regions and edges 
between them have a weight equal to the respective correlation 
(Smith et al., 2013).

Although functional connectivity measured with Pearson's cor‐
relation has provided valuable insights into features of large‐scale 
brain organization common to the healthy population (van Dijk, 
Sabuncu, & Buckner, 2012; Fox et al., 2005; Power et al., 2011; 
Yeo et  al., 2011) and unique across individuals (Finn et al., 2015; 
Rosenberg, Finn, et al., 2016a), two theoretical disadvantages of 
Pearson's correlation may limit its utility as a measure of functional 
brain organization. First, Pearson's correlation does not account for 
the possibility of nonlinear relationships between two regions’ sig‐
nals. Previous research has shown that nonlinear analysis of fMRI 
signals can reveal results that linear analysis cannot. For example, 
Su, Wang, Shen, Feng, and Hu (2013) found that functional con‐
nectivity calculated from nonlinear analysis differentiated schizo‐
phrenic patients from healthy patients with higher accuracy than 
linear functional connectivity. They also found that the strength of 
certain nonlinear functional connections increased in patients with 
schizophrenia, whereas their linear counterparts did not. Second, 
Pearson's functional connectome only contains pairwise interac‐
tions in the brain, but does not contain explicit information on how 
these connections are organized. Investigating the topological struc‐
ture of these connections can give some insight into how these con‐
nections are organized as a part of a more complex network (Bassett 
& Bullmore, 2006; Heuvel & Pol, 2010; Smith et al., 2013).

In this paper, we propose a new measure of functional con‐
nectivity that addresses these two disadvantages by unifying 
both nonlinear analysis of pairwise fMRI signals and large‐scale 
network analysis. The goal of this study was to validate this new 
measure of functional connectivity—information flow measured 
as the maximum flow between nodes whose capacities are de‐
fined with transfer entropy—by demonstrating that it predicts in‐
dividual differences in behavior. To do this, utilizing an approach 
similar to an approach by Yoo et al. (2018), we test whether mod‐
els based on information flow, in comparison with models based 
on the Pearson correlations, can generalize to predict attention 
performance across three completely independent datasets 
(Jangraw et al., 2018; Rosenberg, Finn, et al., 2016a; Rosenberg, 
Hsu, Scheinost, Constable, & Chun, 2018; Rosenberg, Zhang, 
et al., 2016b; Rosenberg et al., 2018; Yoo et al., 2018). Datasets 
include fMRI data collected from healthy adult participants 

who performed a gradual‐onset continuous performance task, 
Attention Network Task (ANT), or stop‐signal task during fMRI. 
Although there has been research in investigating functional con‐
nectivity in the brain using information theory (Dimitrov, Lazar, 
& Victor, 2011; Garofalo, Nieus, Massobrio, & Martinoia, 2009; 
Mäki‐Marttunen, Diez, Cortes, Chialvo, & Villarreal, 2013; Vergara, 
Miller, & Calhoun, 2017; Vicente, Wibral, Lindner, & Pipa, 2010; 
Viol, Palhano‐Fontes, Onias, Araujo, & Viswanathan, 2017), this 
is the first research that, to our knowledge, unifies information‐
theoretic analysis with graph theory to predict human behavior 
from fMRI data. Significant predictions would show that informa‐
tion flow may be a useful alternative to Pearson's correlation as a 
measure of functional connectivity to predict behavior due to its 
theoretical advantages in addressing both nonlinear analysis and 
characterizing network structure as well as success in predicting 
individual differences in behavior.

2  | METHODS

2.1 | Information flow as a measure of functional 
connectivity

2.1.1 | Background

Here, we motivate our new measure of functional connectivity 
through an abstraction that involves using information theory to 
represent the brain as a flow network of information bits. It may be 
particularly useful to explore functional brain connectivity through in‐
formation theory because the brain is an information processing sys‐
tem (Reinagel, 2000). Transfer entropy (TE) is an information‐theoretic 
metric that can measure both linear and nonlinear information transfer 
between two systems (Schreiber, 2000). The TE from signal A to signal 
B answers the question, “How much information does the past state 
of A contain about the future state of B, given that we know the past 
state of B?” (Wibral, Vicente, & Lindner, 2014). Unlike Pearson's cor‐
relation, TE is a directed metric, meaning that the TE from A to B is 
different from the TE to B to A. For example, Schreiber (2000) used TE 
on heart and breath rate data and found that the TE from heart rate 
to breath rate was greater than the TE from breath rate to heart rate.

Instead of coding the functional connectivity between two re‐
gions as the correlation of their respective time series, we can use 
TE to code their relationship as the number of bits transferred from 
one to the other. Transfer entropy has previously been used in a va‐
riety of neuroimaging studies for functional connectivity analysis 
(Wibral et al., 2014). For example, Mäki‐Marttunen and colleagues 
used TE to analyze resting‐state functional connectivity in comatose 
patients as compared to control subjects, and found that the TE cal‐
culated from left intrahemispheric ROIs could be a potential marker 
for large‐scale disturbance of brain function in these patients (Mäki‐
Marttunen et al., 2013). Although other measures can characterize 
nonlinear interactions between signals, here we focus on a metric 
from information theory given that we were motivated by abstract‐
ing the brain as a flow network of information bits. We chose TE 
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rather than alternative information theory metrics such as mutual 
information because it is a directed measure (whereas mutual infor‐
mation is an undirected measure) and flow networks are most fre‐
quently analyzed as directed graphs (Ahuja, Magnanti, & Orlin, 2014).

It is important to emphasize that TE is predictive information trans‐
fer, which is distinct from causal interaction (Lizier & Prokopenko, 
2010). To determine causal interaction, intervention in the system is 
necessary. An information‐theoretic approach to information trans‐
fer like TE is more concerned with how knowing one process affects 
one's ability to predict the other and relies on studying systems in 
the absence of intervention. For our purposes, we are interested in 
information transfer in a purely computational sense, and do not use 
this measure to infer causal relationships between activity in distinct 
brain regions. Furthermore, predictive information transfer is a sta‐
tistical measure that does not characterize physical pathways. Thus, 
we refer to information transfer as representing abstract, functional 
pathways rather than physical brain connections.

The TE from region A to region C measures the information 
transfer from A to B given their respective time series. To fully char‐
acterize the functional relationship between A and C, however, we 
may wish to consider other nodes’ time series that can make indirect 
functional connections, or alternate paths, between them. Previous 
research has shown that, although direct structural connections 
alone do not predict functional connectivity well, incorporating indi‐
rect structural paths can improve predictions of functional connec‐
tivity (Deligianni et al., 2011; Røge et al., 2017). It is possible that, 
analogously, predictions of behavior can be improved by taking into 
account nodes on indirect functional paths along with direct func‐
tional paths. In graph theory, two nodes can be connected both by 
a direct connection, or edge, and indirect pathways that go through 
alternate nodes. For example, let us say node A passes information 
to node C through node B, but node B might modify that informa‐
tion. Taking into account node A’s interaction with node B, node 

B’s interaction with node C, along with node A’s direct interaction 
with node C, would give us stronger evidence that node A is sending 
node C a message. This is different from the standard approach of 
partial correlation, where we take into account node C’s activity in 
order to isolate the relationship between nodes A and B. With our 
approach, we are not trying to use other nodes’ activity to isolate the 
relationship between two nodes, but trying to build a feature of the 
interaction of those two nodes that takes into account the under‐
lying network structure. In general, taking into account the activity 
of intermediate nodes on these alternative pathways between two 
nodes will allow us to incorporate both information about informa‐
tion transfer measured between the two nodes’ time series and how 
those two nodes are connected in the context of the larger network 
structure.

To add consideration of nodes on indirect functional paths be‐
tween pairs of brain regions, we use the concept of maximum flow 
(Ahuja et al., 2014), a well‐known problem in optimization theory. 
Maximum flow problems start with directed weighted graphs, 
where each edge's weight represents the largest number of units 
one can transport through that particular edge (also known as ca‐
pacity). The maximum flow from a source node to a sink node is the 
maximum amount one can “flow” from the source to the sink given 
these capacities on transportation. The amount one can flow does 
not only depend on the weight (capacity), but also the specific un‐
derlying structure of the edges in the graph. In the example shown 
in Figure 1, even though the capacity of the edge between A and C is 
2, the maximum flow between A and C is 5, because there is an alter‐
nate path that goes from A to B to C. Maximum flow provides a good 
way to characterize how two nodes are connected with each other 
using both their direct edge (A‐>C) and indirect pathways (A‐>B‐>C).

Maximum flow has previously been used to characterize alterna‐
tive structural connectivity. Yoo et al. (2015) characterize structural 
connectivity between regions as the maximum flow between the re‐
gions’ corresponding nodes on a network calculated from MRI data. 
Here, we employ maximum flow to characterize functional connec‐
tivity. We quantify functional connectivity between regions as the 
greatest number of bits one region can flow to another region, where 
direct connections between regions have a capacity equal to their TE. 
Since we represent the capacities as transfer entropies, each capacity 
represents the greatest number of bits that can transfer within that 
edge. We are using maximum flow as a way to abstract the brain as 
a flow network of nodes that send bits of information to each other, 
where the bits through specific edges are quantified through TE. The 
addition of maximum flow gives our measure graph‐theoretic proper‐
ties. That is, by defining functional connectivity with maximum flow, 
we are taking into account how those nodes are connected within the 
context of the larger underlying network of the brain.

2.1.2 | Proposed connectivity measure

Overview of connectivity matrix construction

Figure 2 shows the overall steps we use to construct the information 
flow connectivity matrices and describe in the following sections.

F I G U R E  1  Simple example of the maximum flow problem: a 
directed graph where each edge's weight represents the edge's 
capacity, which is the greatest amount of flow that can go through 
that edge. Although one can only flow two units directly from A to 
C, one can also flow three units using the alternative path from A to 
B and then from B to C, which means the maximum flow from A to 
C is equal to 5
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Step 1: parcellation

Preprocessed data were used to calculate a task‐based and a rest‐
ing‐state functional connectivity matrix for each participant in 
the gradCPT dataset, and a resting‐state functional connectivity 
matrix for each participant in the external datasets. We defined 
nodes were using the Shen 268‐node functional brain atlas, which 
includes the cortex, subcortex, and the cerebellum (Shen, Tokoglu, 
Papademetris, & Constable, 2013). The Shen atlas was warped from 
MNI  (Montreal Neurological Institute)   space into single‐subject 
space using linear and nonlinear registrations between the func‐
tional images, anatomical scans, and MNI brain. For every node, a 
mean task‐based time course was calculated by averaging the time 
courses of all of its constituent voxels during task performance, and 
a mean resting‐state time course was calculated by averaging these 
time courses during rest. Although here we used the parcellation 
from Shen et al. (2013), our measure can be applied with any other 
type of parcellation.

Step 2: measuring functional connectivity with TE

Transfer entropy serves as the initial connectivity metric to cal‐
culate higher‐order connectivity features. Transfer entropy is an 
information‐theoretic metric that measures information transfer 
between two systems (Schreiber, 2000). The transfer entropy 
from process A to C tells how much information does the past 
state of A (An) contain about the future state of C (Cn + 1) given 
that we know the past state of C (Cn). This idea is quantified as 
follows:

Briefly, this equation uses the concept of entropy and conditional 
probability distributions to quantify the “incorrectness” of the 

Markov property: p
(
Cn+1|C

(k)
n ,A

(l)
n

)
=p(Cn+1|C

(k)
n ). If this property 

holds, our ability to predict the next state of C using both the previ‐
ous states of A and C is the same as our ability to predict the next 
state of C using just the previous state of C. This property would 
mean that there is no information transfer from A to C (Schreiber, 
2000).

Multiple algorithms have been developed and used to estimate 
TE for continuous data. Here, we use the Kraskov, Stogbauer, and 
Grassberger (KSG) (2018) technique which estimates a probability 
density function for a time series using Kernel estimation and alters 
the kernel width to adjust to the data using a nearest neighbor calcu‐
lation (Lizier, 2014). The KSG approach is often used as the “best of 
breed solution” for TE estimation (Lizier, 2014). We used the open‐
source Java Information Dynamics Toolkit to calculate the transfer 
entropies (Lizier, 2014).

We calculated a full 268 x 268 “TE Matrix” (Figure 2b) for each 
individual, where each cell Mij contains the estimated TE from node 
i to node j. In a graph theory context, each TE matrix represents an 
adjacency matrix of individual brain networks. Since TE is a directed 
metric, this graph is a directed graph (the edge from node A to C is 
different from the edge from node C to A). Since the TE matrix is a 
full matrix, this would also be a complete graph (there exist a forward 
edge and a back edge for every two nodes).

Because the KSG algorithm is an estimator with a variance asso‐
ciated with it (Lizier, 2014), the estimated TE can be negative if the 
true TE between the processes is (or very close to) 0. Transfer en‐
tropy cannot be theoretically negative (Schreiber, 2000), so a mea‐
sured negative TE would be a measurement error. Therefore, after 
calculating the full TE matrix, we find the sparse 268 × 268 TE Matrix 
(Figure 2c) by removing transfer entropies that were measured as 
negative (setting them to 0).

Step 3: computing higher-order connectivity features with maximum 

flow

The next step in calculating our measure is to add information about 
the underlying network topology to the estimation of functional 
connectivity between nodes A and C. To do this, we used maximum 

TEA→C=
∑

p
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log

p
(
Cn+1|C

(k)
n ,A

(l)
n

)

p
(
Cn+1|C

(k)
n

)

F I G U R E  2  Steps used to construct an individual's information flow connectivity matrix. (a) Each individual's fMRI data are parcellated 
into n ROI time series, depending on the parcellation used (see Step 1: parcellation). (b) A full transfer entropy matrix (TEfull) is populated 
with all pairwise transfer entropies among the ROI time series. (c) Negative transfer entropy values are set to 0 to create TEsparse (see Step 2: 
measuring functional connectivity with transfer entropy). (d) Cells in the TEsparse matrix are used to construct graphs in which edges are defined 
as the maximum flow between each pair of nodes. (e) These graphs are represented as a new maximum flow matrix (see Step 3: computing 
higher‐order connectivity features with maximum flow). (f) The maximum flow matrix is then reduced over the anatomical lobe groups (see Step 
3: computing higher‐order connectivity features with maximum flow)

268 ROI time series TEfull TEsparse IFfull IF Connectome

TE
Remove 
<0

Flow w/ 
grouping

Sum over 
lobes
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flow to construct higher‐order connectivity features that include 
nodes on alternative paths of information flow.

The maximum flow problem is as follows: Given a network, what 
is the greatest amount of units one can flow from a source node to a 
sink node using the network's edges if each edge's weight represents 
the capacity of how many units can flow through that edge. By de‐
fining connectivity with maximum flow, calculation of connectivity 
between two nodes also takes into account how those nodes are 
connected to other nodes. For all maximum flow calculations, we 
used the implementation in Python's NetworkX Package (Hagberg, 
Daniel, & Pieter, 2008).

After calculating the sparse TE matrix for each individual 
(see previous section), we then construct the full 268  ×  268 
Information Flow (IFfull) Matrix (Figure 2e) using the sparse TE 
matrix, where IFfull

ij contains the maximum information flow from 
node i to node j which was calculated using a network defined by 
the sparse TE matrix (Figure 2d). Specifically, we use the sparse 
TE matrix as the adjacency matrix for the directed graph used for 
maximum flow.

We calculated three different versions of the information flow 
matrices: full information flow matrix with no restriction, full in‐
formation flow matrix with anatomical restriction, and reduced 
information flow matrix. The full information flow matrix was cal‐
culated by using the entire sparse TE matrix to calculate maximum 
flow for each pair of nodes. The other two matrices are calculated 
using a similar process, but with the introduction of an anatomical 
restriction.

The full information flow matrix with anatomical restriction 
calculates information flow among nodes of the same macroscale 
brain region. To do this, we impose a restriction on the edges we 
consider when calculating maximum flow. Nodes were grouped in 
the 10 brain lobes in each hemisphere: prefrontal, motor, insula, 
parietal, temporal, occipital, limbic, cerebellum, subcortical, and 
brainstem. This is the same lobe scheme described in Finn et al. 
(2015).

Let us say lobe(A) represents the anatomical lobe that node A re‐
sides in, lobe(C) represents the anatomical lobe that node C resides 
in, and Maxflow(A, C, E) represents the maximum flow from node A 
to node C on a network with the set of edges E. TEsparse represents 
the sparse TE matrix.

Note that if nodes A and C reside in the same lobe, then the edge 
set will be all edges that reside inside that lobe. Also, note that the 
number of edges in the set EAC can vary since they come from the 
sparse TE matrix, which does not necessarily have an edge for every 
two nodes.

The reduced form information flow matrix (IF; Figure 2f) is a 
20 × 20 matrix where IFxy is the total information flow going from 
lobe x to lobe y in bits, where paths of information are restricted 

using the procedure described in the previous paragraph. This is cal‐
culating by summing individual flows in IFfull:

If x and y are distinct lobes, then the cell IFxy measures the 
summed information flow from lobe x to lobe y. Note that this is a 
directed measure (flow from x to y is different than flow from y to x), 
since the maximum flow of a graph is a directed quantity. If x and y 
are the same lobe, then the cell IFxy will contain the summed infor‐
mation flow within that lobe. This step is used to reduce the amount 
of total features for each individual from 71,824 in the full matrix to 
400 in the reduced matrix. This reduction in the dimensionality of 
the feature space helps avoid overfitting predictive models.

2.2 | Using information flow to predict individual 
differences in behavior

2.2.1 | Data description

Internal validation: gradCPT dataset

Predictive models were defined and internally validated with 
leave‐one‐subject‐out cross‐validation using a dataset described 
in detail in previous work (Rosenberg, Finn, et al., 2016a). Briefly, 
this sample included 25 healthy adult participants performing the 
gradual‐onset continuous performance task (gradCPT; (Esterman, 
Noonan, Rosenberg, & Degutis, 2012; Rosenberg, Noonan, Degutis, 
& Esterman, 2013)), a test of sustained attention, and resting dur‐
ing functional magnetic resonance imaging (fMRI). GradCPT perfor‐
mance was assessed with sensitivity (d′). This measure was used to 
assess sustained attention during the gradCPT task in previous work 
(Rosenberg, Finn, et al., 2016a; Yoo et al., 2018) and was found to 
have very high reliability (Rosenberg, Finn, et al., 2016a). This meas‐
ure was also confirmed to not be related to head motion in this sam‐
ple (Rosenberg, Finn, et al., 2016a).

Scan sessions included a high‐resolution anatomical scan 
(MPRAGE), a 2D T1‐weighted image with the same slice prescription 
as the functional images for registration purposes, a 6‐min resting‐
state run, three 13:44‐min gradCPT runs, and a second 6‐min rest 
run. Each gradCPT run included 8 s of fixation (excluded from analy‐
sis) followed by three 4‐min blocks of the task interleaved with 32‐s 
breaks. Volumes collected during break periods were also excluded 
from analysis.

Functional runs included 824 (task) or 363 (rest) whole‐brain 
volumes acquired using a multiband echo‐planar imaging (EPI) 
sequence. Parameters were as follows: repetition time (TR) = 
1,000 ms, echo time (TE) = 30 ms, flip angle  =  62°, acquisition 
matrix = 84 × 84, in‐plane resolution = 2.5 mm2, 51 axial‐oblique 
slices parallel to the ac‐pc line, slice thickness = 2.5, multiband 3, 

IF
full

AC
=Maxflow(A,C,EAC)

EAC={(i,j)∈TE
sparse

∀ nodei∈ lobe(A),∀ nodej∈ lobe(C)}

IFxy=
∑

node i∈x

node j∈y

IF
full

ij
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and acceleration factor = 2. MPRAGE parameters were as follows: 
TR = 2,530 ms, TE = 3.32, flip angle = 7°, acquisition matrix = 256 
× 256, in‐plane resolution = 1.0 mm2, slice thickness = 1.0 mm, and 
176 sagittal slices. A 2D T1‐weighted image with the same slice 
prescription as the functional images was also collected to aid with 
registration.

Image preprocessing was performed using BioImage Suite 
(Joshi et al., 2011) and custom MATLAB scripts. SPM8 (http://
www.fil.ion.ucl.ac.uk/spm/softw​are/spm8/) was used to perform 
motion correction. The following were regressed from the data: 
mean signal from cerebrospinal fluid, white matter, linear and qua‐
dratic drift, and gray matter and a 24‐parameter motion model (six 
motion parameters, six temporal derivatives, and their squares). 
Finally, data were temporally smoothed with a zero mean unit vari‐
ance Gaussian filter.

Due to excessive head motion (>2 mm translation, >3° rotation, 
or 0.15  mm mean frame‐to‐frame displacement), one resting run 
from two participants and one task run from five participants were 
excluded from analysis. Head motion, calculated as mean frame‐
to‐frame displacement, did not correlate with d′ in any of the three 
task runs. Additional details are provided in Rosenberg, Finn, et al., 
2016a.

External validation 1: ANT dataset

The predictive model defined in the gradCPT dataset was applied 
unchanged to three completely independent samples to assess gen‐
eralizability. The first external validation sample included fMRI data 
collected as 44 participants performed the ANT (Fan, Mccandliss, 
Fossellia, Flombaum, & Posner, 2005) and rested (Rosenberg et al., 
2018). Three participants were excluded prior to analysis because 
they had previously participated in the gradCPT study. ANT perfor‐
mance was measured using variability of correct‐trial response times 
(i.e., RT standard deviation divided by mean), a more sensitive meas‐
ure of overall attention to the task than accuracy (Rosenberg et al., 
2018).

Functional and structural MRI scans were acquired as was done 
with the gradCPT dataset. Experimental sessions began with a high‐
resolution anatomical scan, followed by two 6‐min resting scans and 
six 7:05‐min task runs. Resting‐state runs included 360 whole‐brain 
volumes, and task runs included 425 volumes. fMRI data were pre‐
processed with the same steps as in the gradCPT dataset. Excluded 
from the analysis were runs with excessive head motion, defined a 
priori as >2‐mm translation, >3° rotation, or 0.15‐mm mean frame‐
to‐frame displacement (Rosenberg, Finn, et al., 2016a; Rosenberg, 
Zhang, et al., 2016b). For excessive motion, two task runs were ex‐
cluded from one participant and one task run was excluded from 
three participants, and. Additional details are provided in Rosenberg 
et al., 2018.

Because of moderate correlations between head motion and RT 
variability, we also excluded edges that were correlated with head 
motion (maximum displacement, maximum rotation, or mean frame‐
to‐frame displacement) at the p < 0.05 significance level (Rosenberg 
et al., 2018).

External validation 2: stop-signal task dataset

The data described in Rosenberg, Zhang, et al. (2016b) were used 
for the second external validation dataset. This sample contained 72 
healthy adults that performed a stop‐signal task (four 9:50‐min runs) 
and rested (one 9:50‐min run) during fMRI scanning. Approximately 
40 min before scanning, 24 of these participants were given a single 
dose of methylphenidate (MPH), a common treatment for attention 
deficit hyperactivity disorder (ADHD). Resting‐state data were avail‐
able for 16 participants in the methylphenidate group and 56 partici‐
pants in the control group. For this paper, we only used resting‐state 
fMRI data on the external datasets. This dataset was originally de‐
scribed in Farr et al. (2014a, 2014b), and the criteria for excluding 
subjects are detailed in Rosenberg, Zhang, et al. (2016b). We refer to 
this dataset as the MPH dataset.

The preprocessing steps were identical to those described 
above. Runs were excluded for excessive head motion, defined a 
priori as >2‐mm translation,>3° rotation, or >0.15‐mm mean frame‐
to‐frame displacement (Rosenberg, Zhang, et al., 2016b). We used 
go response rate to measure attention, since it was found to be 
the response variable most closely related to sustained attention 
(Rosenberg, Zhang, et al., 2016b).

2.2.2 | Connectome‐based predictive modeling

Recent work has demonstrated that individual differences in func‐
tional brain organization are related to individual differences in 
traits and behavior. Thus, if information flow (i.e., the maximum 
flow between two nodes whose capacities are defined with TE) ac‐
curately captures the functional architecture of the brain, it should 
be able to significantly predict an individual's cognitive tenden‐
cies and behavioral performance. Connectome‐based predictive 
modeling (CPM), a recently developed machine‐learning‐based 
framework for predicting individual differences in behavior (Shen 
et al., 2017), has been used, for example, to show that functional 
connectivity observed during task engagement and rest predicts 
individual differences in attention (Rosenberg, Finn, et al., 2016a), 
and fluid intelligence (Finn et al., 2015; Shen et al., 2017). It has 
also been used to measure various measures of attention such as 
ADHD symptom severity (Rosenberg, Finn, et al., 2016a), stop‐sig‐
nal task performance (Rosenberg, Zhang, et al., 2016b), and ANT 
performance (Rosenberg et al., 2018). We used CPM to generate 
models of attention using the 20 ×  20 information flow matrices 
from the 25 participants in our training (internal validation) set. The 
final trained model is a regression model that can be used to pre‐
dict behavior from resting‐state functional connectivity measured 
with information flow. Figure 3 shows an overview of our predictive 
modeling pipeline.

First, flows (individual cells in the information flow, or IF, matri‐
ces) that are relevant to behavior are identified by calculating the 
Spearman rank correlation between each flow in the task infor‐
mation flow matrix across subjects in the training set and the cor‐
responding behavioral scores. Any flows that are not significantly 
correlated (p > 0.05) are taken out of consideration.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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The next step is feature aggregation through principal compo‐
nents analysis (PCA) on the selected flows. PCA makes components, 
linear combinations of the features that maximize variance. When 
performing PCA, one needs to decide the number of components to 
use. The number of components is selected with a leave‐one‐sub‐
ject‐out cross‐validation (LOOCV) loop within the training set. All 
possible components numbers, from 1 to the number of subjects, 
are tested within the LOOCV loop, and the number of components 
that gives the highest prediction performance is selected. Then, the 
final PCA transformation is applied on the selected flows, and the 
resulting features are incorporated into a linear regression where the 
dependent variable is the behavior score.

2.2.3 | Model validation

Model validation: internal dataset

The gradCPT dataset was used for internal validation (Rosenberg, 
Finn, et al., 2016a; Rosenberg, Zhang, et al., 2016b). Two informa‐
tion flow matrices are calculated for each subject: one on task and 
one on resting‐state data. Then, LOOCV is employed to evaluate 
the model performance. In each iteration, the subjects are sepa‐
rated into a training set (n = 24) and a testing set (n = 1). Within the 
training set, task flows (cells on the task IF) relevant to behavior 
are isolated by performing Spearman's (rank) correlation on each 
flow with the behavior score, d′. Flows that are not significantly 
correlated with behavior at a threshold of p = 0.05 are left out of 
consideration. Then, a PCA transformation is fitted on the remain‐
ing flows. As described in the previous section “Connectome‐based 
Predictive Modeling,” the number of PCA components is selected 
based on a nested LOOCV loop inside the 24‐participant train‐
ing set. In other words, the number of components is set to the 
number that gives the best performance in a LOOCV loop within 
the training set. In internal validation, this nested LOO loop is run 
within the current training set for each iteration of the original LOO 
loop. The calculated PCA transformation fitted on the training set is 
then applied on the training set. Then, the same edges selected on 
the training set are selected on the left‐out subject, and the same 
PCA transformation calculated on the training set is applied on 
the left‐out subject. The resulting features on the training set are 

incorporated into a linear regression to predict the left‐out subject's 
behavior score.

In order to facilitate interpretability, we then converted each left‐
out subjects’ predicted behavior scores into a standardized z‐score. 
The mean and standard deviation used for this z‐score is derived 
from the population of predicted behavior scores predicted from 
the nested LOOCV left‐out participants’ resting‐state fMRI that we 
predicted in the previous step. The final score of the novel subject is 
a z‐score that represents how the novel subject's behavior deviates 
from the predicted behavior of the individuals in the training set, 
where each individual prediction in the training set was calculated 
using a nested LOOCV loop.

After each participant has been left out once, predictions are 
evaluated through Spearman's rank correlation with the actual 
scores. Although we normalized predicted but not observed be‐
havioral scores, this does not affect the results since we are using 
Spearman's rank correlation, which only considers the relative 
ordering of behavior and predicted behavior across individuals. 
Although there exist alternative model evaluation metrics such as 
mean squared error, correlation is well suited for evaluating CPM 
models whose predictions should be considered relative rather than 
absolute (Rosenberg, Finn, et al., 2016a; Shen et al., 2017).

Model validation: external datasets

For external validation, the gradCPT dataset was used as the train‐
ing data and the ANT and stop‐signal task dataset were used for 
external validations. The model is built with the gradCPT dataset in 
the same fashion the model was built in the training set of a single 
LOOCV iteration in internal validation. The same task‐relevant edges 
selected within the training set (gradCPT) are used in the testing set, 
and the same PCA transformation calculated in the training set is 
applied on the testing set. In other words, the same trained model 
used in internal validation is used on the external datasets, and the 
external datasets are completely independent. Again, the number 
of PCA components is determined using a LOOCV loop within the 
training set (gradCPT).

Just as in internal validation, we convert each predicted behavior 
score to a standardized z‐score. The mean and standard deviation 
used for this z‐score is derived from the population of predicted 

F I G U R E  3   Overview of our predictive 
modeling pipeline. Task‐based information 
flow matrices are used to train a linear 
model that can predict a subject's 
behavior score using his/her resting‐state 
information flow connectome
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behavior scores predicted from the training set (gradCPT) partici‐
pants’ resting‐state fMRI that we predicted in the previous step with 
a LOOCV loop. The final score of each subject in the testing set is a 
z‐score that represents how that testing set subject's behavior de‐
viates from the predicted behavior of the individuals in the training 
set, where each individual prediction in the training set was calcu‐
lated using a LOOCV loop.

3  | RESULTS

3.1 | Information flow connectivity matrices

Figure 4 shows group averaged resting‐state full information flow 
matrices across the three datasets. In each of the three datasets, 
the five highest average flows were within the left prefrontal cor‐
tex, from the left prefrontal cortex to the right prefrontal cortex, 
from the right prefrontal cortex to the left prefrontal cortex, from 
the right temporal lobe to the left prefrontal cortex, and from the 
left prefrontal cortex to the right temporal lobe. We performed fol‐
low‐up analyses to determine if information flow is correlated with 
Signal‐to‐Noise ratio (SNR) (see Figure S2 and S3 for further details). 
We concluded that information flow is not significantly correlated 
with SNR. 

3.2 | Internal validation results

Model performance was evaluated using Spearman's rank corre‐
lation on predicted scores (each calculated as a left‐out subject 
within the LOOCV loop) and actual behavior scores. Statistical 
significance was evaluated through a 10,000‐iteration permuta‐
tion test.

We evaluated three different versions of the information flow 
matrices: information flow matrix with no macroscale group restric‐
tion, full information flow matrix with macroscale group restriction 
(see Figure 2), and reduced information flow matrices (see Figure 2). 
Figure 5 displays these results. Introducing anatomical restriction via 
macroscale grouping when calculating the maximum flow improves 
the predictive power of information flow‐based predictive mod‐
els. Furthermore, the model with the reduced dimensionality (from 

268 × 268 node × node to 20 × 20 lobe × lobe) was the most signifi‐
cant at predicting behavior.

Figure 6 displays the results for the reduced information flow 
matrices (the rightmost model in Figure 5). The model's predic‐
tions strongly and significantly correlated with observed behavioral 
scores (ρ = 0.663, p = 0.0002). The number of PCA components was 
determined through a nested LOOCV loop within the training set 
(see section “Model validation: Internal dataset”). The selected num‐
ber of PCA components used differs in each iteration in the LOOCV 
loop since the training set of each iteration slightly differs. Out of 
each of the 25 iterations, the median selected number of compo‐
nents was 12, with a standard deviation of 4.14.

3.3 | External validation results

We applied the model that performed the best in internal valida‐
tion (reduced information flow) to the external validation datasets. 
Just as in internal validation, model performance was evaluated 

F I G U R E  4  Group averaged resting‐state information flow connectivity matrices across datasets. The scale of the color bar is in bits

F I G U R E  5   Results from three different types of flows: full flow 
matrix with no anatomical restriction (described in Methods), full 
flow matrix with anatomical restriction (described in Methods), and 
the reduced flow matrix (described in Methods). Here, we see that 
models based on the reduced information flow matrix significantly 
predict individual differences in attentional performance in the 
gradCPT sample, whereas the models based on the other two flow 
matrices did not yield significant predictions
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using Spearman's rank correlation on predicted and actual scores 
and statistical significance was determined using a 10,000‐iteration 
permutation test. The number of PCA components was determined 
through a LOOCV loop within the training set (see section “Model 
validation: External datasets”). The selected number of components 
in the external validation model was 12, which was the same as the 
median selected number of components in the internal validation 
model. The results across the three external datasets are shown in 
Figure 7.

The ANT and stop‐signal task datasets’ predictions were sta‐
tistically significant (ANT: ρ  =  −0.31, p=0.0225; stop‐signal task: 
ρ = 0.34, p = 0.0015). Note that the ANT correlation coefficient is 
negative, because our CPM model was trained to predict gradCPT 
performance, so higher predicted scores correspond to better sus‐
tained attention. RT variability is negatively associated with sus‐
tained attention, so we expect model predictions to be negatively 
correlated with ANT performance scores.

3.4 | Distribution of predictive flows

Figure 8 shows the distribution of flows that were included in 
the predictions in external validation colored by their contribu‐
tion to the linear model. The final model used for external valida‐
tion tuned the number of principal components to 12, which was 
found by optimizing the LOOCV predictions within the training 
set. In Figure 7, a flow's contribution was calculated by summing 
the absolute value of its weight in a principal component across 
all 12 components. The connections that contributed the most to 
the principal components were between the right temporal lobe 
and left prefrontal cortex, from the right temporal lobe to the left 
cerebellum, and from the left prefrontal cortex to the left occipital 

lobe. Out of all 400 flows in the information flow matrix, 20 of 
those flows (one for each of the 20 regions) measure information 
flow within a certain region (“within flows”). The only within flow 
that was found to be predictive of behavior was the flow within 
the left occipital lobe.

3.5 | Comparison with previous results

Figure 9 compares the current study's results with previously pub‐
lished predictions on the same datasets. We compared our model 
with other studies that trained models on task‐based fMRI data and 
applied models to novel participants’ resting‐state fMRI. Results 
demonstrate that predictions based on information flow perform 
comparatively to predictions that were based on more traditional 
measures of functional connectivity. Although information flow does 
not perform strictly better than measures used in the previous stud‐
ies, it is important to highlight that information flow in addition the‐
oretical capability of capturing nonlinear relationships. Therefore, 
due to its theoretical advantages in nonlinear analyses and network 
structure analysis and its success in predicting behavior, information 
flow may be a potentially useful measure of functional connectivity.

4  | DISCUSSION

In this study, we proposed a new measure of functional connectivity 
“information flow” that abstracts the brain as a flow network of bits 
and quantifies functional connectivity as the amount of bits flowing 
between regions. We validate this proposed measure by using a ma‐
chine‐learning framework to build a model that predicts individual 
differences in behavior. Specifically, we utilized an approach similar 

F I G U R E  6   Internal validation results. Predicted and actual d′ results were correlated using Spearman's rank correlation. Statistical 
significance was determined by randomly permuting subjects’ d′ scores for 10,000 iterations, repeating the prediction analysis, and 
determining the fraction of correlations between predicted and actual scores that were as extreme as the original data. The relationship 
between observed and predicted d′ scores remains significant in permutation testing if the two lowest predicted d′ scores are excluded 
(ρ = 0.568, p = 0.0048)
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to that of Yoo et al. (2018) of building a connectome‐based predictive 
model (Shen et al., 2017) to predict individual attention scores across 
three independent datasets. Our CPM was able to use information 
flow to predict attention scores of novel individuals in three datasets 
(gradCPT, ANT, and SST) from resting‐state fMRI data. These results 
show a proof of principle that demonstrates that information flow can 
help characterize functional brain organization relevant to behavior.

Information flow accomplishes nonlinear analysis of signals via 
the use of TE. Previous research has shown that nonlinear analysis 
of fMRI signals can reveal results that linear analysis cannot. For ex‐
ample, Su et al. (2013) found that functional connectivity calculated 
from nonlinear methods differentiated schizophrenic patients from 
healthy patients with higher accuracy than that of linear methods. 
They also found that the strength of certain nonlinear functional 
connections increased in patients with schizophrenia, whereas their 
linear counterparts did not. Thus, it is important that information 
flow is able to predict behavior as well as Pearson's correlation, be‐
cause it will have the added theoretical advantage of being able to 
elucidate nonlinear interactions that linear methods would not be 

able to. Here, we provide a proof of concept that information flow 
predicts individual differences in attention. Future work may explore 
whether nonlinear interactions captured by information flow offer 
benefits for predicting other behaviors and cognitive abilities across 
a variety of contexts.

Information flow abstracts the brain as a flow network of nodes 
that send bits of information to each other. To quantify how much 
information is flowing between particular regions, we used maxi‐
mum flow. In internal validation, we tested three different types of 
information flow: the full (node by node) information flow with no 
anatomical restriction, the full (node by node) information flow with 
anatomical restriction, and reduced (lobe by lobe) information flow 
(see Figure 5). We saw that reduced information flow was the most 
significant at predicting behavior.

In general, the macroscale grouping used for maximum flow plays 
an important role in calculating information flow. We used the lobe 
groupings, which capture the gross anatomy of the brain and facilitate 
interpretability. We used the lobe grouping rather than a grouping fo‐
cused on brain function, such as the functional networks described 

F I G U R E  7  External validation results for Attention Network Task (ANT) and methylphenidate (MPH). Both ANT and MPH predictions 
were statistically significant. All relationships between observed and predicted behavioral scores are in the expected direction, as gradCPT 
d′ and stop‐signal go rate scores correspond to better attention but higher ANT RT variability scores correspond to worse attention



     |  11 of 13KUMAR et al.

in Finn et al. (2015), because we wanted to introduce groupings that 
would provide an anatomical constraint to the paths of information 
flow. We saw that providing such an anatomical constraint helped 
the predictive models’ performance (Figure 5). We also used the lobe 
groupings to reduce the flow matrix (Figure 2f), because we observed 
in internal validation that having a smaller feature space helps pre‐
dictive models (Figure 5). There are other types of groupings, some 

based on anatomy and some based on function, that may better cap‐
ture macroscale brain organization and improve behavioral predic‐
tions. Testing other macroscale groups is a useful future direction. It 
is also possible to calculate information flow without restrictions as 
we have done in this study (see Figure 5). However, the calculation of 
information flow without restrictions (i.e., without applying a macro‐
scale grouping) is computationally intensive given that, for each flow 
calculation, edges spanning the entire whole‐brain graph are taken 
into account. We showed here that one can use macroscale groups to 
reduce the computation time and, in some cases, obtain numerically 
better prediction results. Whether or not to use macroscale groups 
and impose restrictions on the amount of edges used in the calcula‐
tion of each flow in order to reduce the computation time depends on 
the user of the method and their specific data.

We use CPM (Finn et al., 2015; Rosenberg, Finn, et al., 2016a; Shen 
et al., 2017) in order to predict behavior from functional connectivity 
measured by information flow. Unlike other studies that use CPM, we 
used PCA to aggregate features before inserting them it into a linear 
model (see Figure 3), whereas other studies take the sum of the fea‐
tures (Rosenberg, Finn, et al., 2016a) or use partial least squares regres‐
sion (Yoo et al., 2018). We used PCA, instead of the feature aggregation 
methods used in previous studies, because we saw that it had numeri‐
cally the highest performance in internal validation (see Figure S1).

It is certainly possible to use other flow constructs to abstract 
the brain as a flow network of bits. For example, the minimum cost 
flow problem involves finding the cheapest way of sending a certain 
amount of flow through a flow network (Ahuja et al., 2014). Rather 
than modeling the brain as a flow network designed to maximize the 

F I G U R E  8   Distribution of flows included in the final predictive 
model in external testing. The connections are colored by their 
relative contribution to the model. A flow's contribution was 
calculated by summing the absolute value of its weight in a principal 
component across all components

F I G U R E  9  Comparison of our results with those of previous studies. We compared our model to other models that, like our model, 
were trained on task‐based fMRI and applied to resting‐state fMRI data. Yoo et al. (2018) compare different models, so just as we used the 
model that performed best in internal validation, and we compared the model in Yoo et al. (2018) that performed best in internal validation 
when trained on task‐based fMRI and applied to resting‐state fMRI. Note that we previously evaluated predictions based on Spearman's 
correlation. However, since previous publications were evaluated based on Pearson's correlation, all the results reported here are with 
Pearson's correlation
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number of bits transported across regions, it is possible that we can 
instead model the brain as a flow network designed to flow a certain 
number of bits as efficiently as possible. Depending on one's specific 
data, it may be worth considering modeling information flow using 
different solutions than used for the maximum flow problem.It is also 
important to reiterate that when we discuss the transfer of bits of in‐
formation via TE, we refer to predictive information transfer, which 
is distinct from causal information transfer (Lizier & Prokopenko,  
2010). Predictive information transfer between brain regions is a sta‐
tistical concept that does not imply that a physical connection causes 
measured information transfer. Although we cannot use TE to infer 
causal effects or the existence of physical processes between dif‐
ferent brain regions, predictive information transfer can be useful in 
predicting behavior. Lizier & Prokopenko (2010) describe predictive 
information transfer and causal information flow (or causal effect) as 
two useful, but distinct, concepts. In a complex system, causal infor‐
mation flow is a microlevel property that can study causal relation‐
ships within the details of the system and can only be determined 
by intervention in the system. In contrast, predictive information 
transfer is a macrolevel property that can study the emergent com‐
putation of the system. In its microlevel viewpoint, causal effects are 
not effective in studying the emergent computation of the system, 
because intervening in a system to study certain variables’ causal 
relationships blocks the influence of other variables that are relevant 
to the emergent computation. When we use information flow in this 
study, we are using predictive information transfer to predict the 
emergent computation of the brain, which is behavior.

We used maximum flow to consider the topological structure 
underlying the nodes when estimating their functional connectiv‐
ity. However, using maximum flow has some disadvantages. First, 
the algorithm needs capacities for each edge: the maximum amount 
that can flow directly within that edge. We used pairwise transfer 
entropies between nodes as those capacities, but we cannot infer 
the true capacity of direct information transfer. Therefore, each TE 
value can only serve as a lower bound on the amount of informa‐
tion transfer possible between those nodes. Additionally, when we 
use maximum flow from node A to node B, we are only describing 
the maximal amount of information that could flow from node A to 
node B. Therefore, in a situation such as that depicted in Figure 1, 
the information flowing from A to B may be independent of the in‐
formation from B to C. In other words, our measure of information 
flow does not measure the exact amount of information flow be‐
tween regions, but measures a lower bound on the maximal amount 
of information flow between regions. It is also important to empha‐
size that we are not claiming that information flow is necessarily 
better than more traditional measures to functional connectivity 
such as the Pearson correlation. Instead, we are presenting infor‐
mation flow as a new measure that has capabilities of measuring 
nonlinear interactions, has graph‐theoretic analysis, and can be 
successful in predicting behavior from brain data. Despite the lim‐
itations, the current results demonstrate that comparing the lower 
bound of the maximal amount of information flow across people 
can help us predict individual differences in behavior.
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